Attributes Underlying Patient Choice for Telerehabilitation Treatment: A mixed-Methods Systematic Review to Support a Discrete Choice Experiment Study Design

Document Type : Review Article


1 Université de Sherbrooke, Sherbrooke, QC, Canada

2 Centre de Recherche sur le Vieillissement, Sherbrooke, QC, Canada

3 Département de Gestion, Évaluation et Politique de Santé, École de santé publique de l'Université de Montréal, Montréal, QC, Canada

4 Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, QC, Canada


Across most healthcare systems, patients are the primary focus. Patient involvements enhance their adherence to treatment, which in return, influences their health. The objective of this study was to determine the characteristics (ie, attributes) and associated levels (ie, values of the characteristics) that are the most important for patients regarding telerehabilitation (TR) healthcare to support a future discrete choice experiment (DCE) study design.

A mixed-methods systematic review was conducted from January 2005 to the end of July 2020 and the search strategy was applied to five different databases. The initial selection of articles that met the eligibility criteria was independently made by one researcher, two researchers verified the accuracy of the extracted data, and all researchers discussed about relevant variables to include. Reporting of this systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the Mixed Methods Appraisal Tool (MMAT) was used to assess the quality of the study. A qualitative synthesis was used to summarize findings.

From a total of 928 articles, 11 (qualitative [n = 5], quantitative [n = 3] and mixed-methods [n = 3] design) were included, and 25 attributes were identified and grouped into 13 categories: Accessibility, Distance, Interaction, Technology experience, Treatment mode, Treatment location, Physician contact mode, Physician contact frequency, Cost, Confidence, Ease of use, Feeling safer, and Training session. The attributes levels varied from two to five. The DCE studies identified showed the main stages to undertake these types of studies.

This study could guide the development of interview grid for individual interviews and focus groups to support a DCE study design in the TR field. By understanding the characteristics that enhance patients’ preferences, healthcare providers can create or improve TR programs that provide high-quality and accessible care. Future research via a DCE is needed to determine the relative importance of the attributes.


  1. Sarker AR, Sultana M, Mahumud RA, et al. Economic costs of hospitalized diarrheal disease in Bangladesh: a societal perspective. Glob Health Res Policy. 2018;3:1. doi:1186/s41256-017-0056-5
  2. Lines LM, Lepore M, Wiener JM. Patient-centered, person-centered, and person-directed care: they are not the same. Med Care. 2015;53(7):561-563. doi:1097/mlr.0000000000000387
  3. Biondo PD, Nekolaichuk CL, Stiles C, Fainsinger R, Hagen NA. Applying the Delphi process to palliative care tool development: lessons learned. Support Care Cancer. 2008;16(8):935-942. doi:1007/s00520-007-0348-2
  4. de Bekker-Grob EW, Ryan M, Gerard K. Discrete choice experiments in health economics: a review of the literature. Health Econ. 2012;21(2):145-172. doi:1002/hec.1697
  5. Bowling A, Ebrahim S. Measuring patients' preferences for treatment and perceptions of risk. Qual Health Care. 2001;10(Suppl 1):i2-8. doi:1136/qhc.0100002
  6. Bujold M, Hong QN, Ridde V, et al. Oser les défis des méthodes mixtes en sciences sociales et sciences de la santé. Association francophone pour le savoir; 2018.
  7. Bech M, Gyrd-Hansen D. Effects coding in discrete choice experiments. Health Econ. 2005;14(10):1079-1083. doi:1002/hec.984
  8. Determann D. Discrete Choice Experiments for Health Policy: Past, Present, and Future. Erasmus University Rotterdam; 2016.
  9. Brennan DM, Mawson S, Brownsell S. Telerehabilitation: enabling the remote delivery of healthcare, rehabilitation, and self management. Stud Health Technol Inform. 2009;145:231-248.
  10. Moffet H, Tousignant M, Nadeau S, et al. In-home telerehabilitation compared with face-to-face rehabilitation after total knee arthroplasty: a noninferiority randomized controlled trial. J Bone Joint Surg Am. 2015;97(14):1129-1141. doi:2106/jbjs.n.01066
  11. Wang X, Hunter DJ, Vesentini G, Pozzobon D, Ferreira ML. Technology-assisted rehabilitation following total knee or hip replacement for people with osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2019;20(1):506. doi:1186/s12891-019-2900-x
  12. Tousignant M, Moffet H, Boissy P, Corriveau H, Cabana F, Marquis F. A randomized controlled trial of home telerehabilitation for post-knee arthroplasty. J Telemed Telecare. 2011;17(4):195-198. doi:1258/jtt.2010.100602
  13. Agostini M, Moja L, Banzi R, et al. Telerehabilitation and recovery of motor function: a systematic review and meta-analysis. J Telemed Telecare. 2015;21(4):202-213. doi:1177/1357633x15572201
  14. Edgar MC, Monsees S, Rhebergen J, et al. Telerehabilitation in stroke recovery: a survey on access and willingness to use low-cost consumer technologies. Telemed J E Health. 2017;23(5):421-429. doi:1089/tmj.2016.0129
  15. Tousignant M, Moffet H, Nadeau S, et al. Cost analysis of in-home telerehabilitation for post-knee arthroplasty. J Med Internet Res. 2015;17(3):e83. doi:2196/jmir.3844
  16. Paneroni M, Colombo F, Papalia A, et al. Is telerehabilitation a safe and viable option for patients with COPD? a feasibility study. COPD. 2015;12(2):217-225. doi:3109/15412555.2014.933794
  17. Cranen K, Groothuis-Oudshoorn CG, Vollenbroek-Hutten MM, MJ IJ. Toward patient-centered telerehabilitation design: understanding chronic pain patients' preferences for web-based exercise telerehabilitation using a discrete choice experiment. J Med Internet Res. 2017;19(1):e26. doi:2196/jmir.5951
  18. Agence d'évaluation des technologies et des modes d'intervention en santé. Télésanté: lignes directrices cliniques et normes technologiques en téléréadaptation. ETMIS. 2006;2(3).
  19. Tousignant M, Boissy P, Moffet H, et al. Patients' satisfaction of healthcare services and perception with in-home telerehabilitation and physiotherapists' satisfaction toward technology for post-knee arthroplasty: an embedded study in a randomized trial. Telemed J E Health. 2011;17(5):376-382. doi:1089/tmj.2010.0198
  20. Moffet H, Tousignant M, Nadeau S, et al. Patient satisfaction with in-home telerehabilitation after total knee arthroplasty: results from a randomized controlled trial. Telemed J E Health. 2017;23(2):80-87. doi:1089/tmj.2016.0060
  21. Demiris G, Speedie SM, Finkelstein S. Change of patients' perceptions of TeleHomeCare. Telemed J E Health. 2001;7(3):241-248. doi:1089/153056201316970948
  22. Coast J, Al-Janabi H, Sutton EJ, et al. Using qualitative methods for attribute development for discrete choice experiments: issues and recommendations. Health Econ. 2012;21(6):730-741. doi:1002/hec.1739
  23. Pluye P, Gagnon MP, Griffiths F, Johnson-Lafleur J. A scoring system for appraising mixed methods research, and concomitantly appraising qualitative, quantitative and mixed methods primary studies in mixed studies reviews. Int J Nurs Stud. 2009;46(4):529-546. doi:1016/j.ijnurstu.2009.01.009
  24. Kaambwa B, Ratcliffe J, Shulver W, et al. Investigating the preferences of older people for telehealth as a new model of health care service delivery: a discrete choice experiment. J Telemed Telecare. 2017;23(2):301-313. doi:1177/1357633x16637725
  25. Wong SF, Norman R, Dunning TL, Ashley DM, Lorgelly PK. A protocol for a discrete choice experiment: understanding preferences of patients with cancer towards their cancer care across metropolitan and rural regions in Australia. BMJ Open. 2014;4(10):e006661. doi:1136/bmjopen-2014-006661
  26. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:1136/bmj.n71
  27. Pluye P, Robert E, Cargo M, et al. Proposal: A Mixed Methods Appraisal Tool for Systematic Mixed Studies Reviews. Montréal: McGill University; 2011:1-8.
  28. Pace R, Pluye P, Bartlett G, et al. Testing the reliability and efficiency of the pilot Mixed Methods Appraisal Tool (MMAT) for systematic mixed studies review. Int J Nurs Stud. 2012;49(1):47-53. doi:1016/j.ijnurstu.2011.07.002
  29. Gagnon MP, Tantchou Dipankui M, Poder TG, Payne-Gagnon J, Mbemba G, Beretta V. Patient and public involvement in health technology assessment: update of a systematic review of international experiences. Int J Technol Assess Health Care. 2021;37:e36. doi:1017/s0266462321000064
  30. Bedra M, McNabney M, Stiassny D, Nicholas J, Finkelstein J. Defining patient-centered characteristics of a telerehabilitation system for patients with COPD. Stud Health Technol Inform. 2013;190:24-26.
  31. Crotty M, Killington M, van den Berg M, Morris C, Taylor A, Carati C. Telerehabilitation for older people using off-the-shelf applications: acceptability and feasibility. J Telemed Telecare. 2014;20(7):370-376. doi:1177/1357633x14552382
  32. Brouns B, Meesters JJL, Wentink MM, et al. Why the uptake of eRehabilitation programs in stroke care is so difficult-a focus group study in the Netherlands. Implement Sci. 2018;13(1):133. doi:1186/s13012-018-0827-5
  33. Tyagi S, Lim DSY, Ho WHH, et al. Acceptance of tele-rehabilitation by stroke patients: perceived barriers and facilitators. Arch Phys Med Rehabil. 2018;99(12):2472-2477.e2472. doi:1016/j.apmr.2018.04.033
  34. Wentink M, van Bodegom-Vos L, Brouns B, et al. How to improve eRehabilitation programs in stroke care? a focus group study to identify requirements of end-users. BMC Med Inform Decis Mak. 2019;19(1):145. doi:1186/s12911-019-0871-3
  35. Marquis N, Larivée P, Saey D, Dubois MF, Tousignant M. In-home pulmonary telerehabilitation for patients with chronic obstructive pulmonary disease: a pre-experimental study on effectiveness, satisfaction, and adherence. Telemed J E Health. 2015;21(11):870-879. doi:1089/tmj.2014.0198
  36. Hoaas H, Andreassen HK, Lien LA, Hjalmarsen A, Zanaboni P. Adherence and factors affecting satisfaction in long-term telerehabilitation for patients with chronic obstructive pulmonary disease: a mixed methods study. BMC Med Inform Decis Mak. 2016;16:26. doi:1186/s12911-016-0264-9
  37. Lerner D, Amick BC 3rd, Rogers WH, Malspeis S, Bungay K, Cynn D. The work limitations questionnaire. Med Care. 2001;39(1):72-85. doi:1097/00005650-200101000-00009
  38. Reed Johnson F, Lancsar E, Marshall D, et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR conjoint analysis experimental design good research practices task force. Value Health. 2013;16(1):3-13. doi:1016/j.jval.2012.08.2223
  39. Cooper NJ, Mugford M, Symmons DP, Barrett EM, Scott DG. Development of resource-use and expenditure questionnaires for use in rheumatology research. J Rheumatol. 2003;30(11):2485-2491.
  40. Sharma S, Ward EC, Burns C, Theodoros D, Russell T. Assessing dysphagia via telerehabilitation: patient perceptions and satisfaction. Int J Speech Lang Pathol. 2013;15(2):176-183. doi:3109/17549507.2012.689333
  41. Creswell JW, Clark VLP. Designing and Conducting Mixed Methods Research. Thousand Oaks: SAGE Publications; 2017.
  42. Abiiro GA, Leppert G, Mbera GB, Robyn PJ, De Allegri M. Developing attributes and attribute-levels for a discrete choice experiment on micro health insurance in rural Malawi. BMC Health Serv Res. 2014;14:235. doi:1186/1472-6963-14-235
  43. Drummond M, Sculpher M, Claxton K, Stoddart G, Torrance G. Method for the Economic Evaluation of Health Care Programmes. Oxford: Oxford University Press; 2015.
  44. Whichello C, van Overbeeke E, Janssens R, et al. Factors and situations affecting the value of patient preference studies: semi-structured interviews in Europe and the US. Front Pharmacol. 2019;10:1009. doi:3389/fphar.2019.01009
  45. Bahrampour M, Byrnes J, Norman R, Scuffham PA, Downes M. Discrete choice experiments to generate utility values for multi-attribute utility instruments: a systematic review of methods. Eur J Health Econ. 2020;21(7):983-992. doi:1007/s10198-020-01189-6
  46. Norman R, Viney R, Aaronson NK, et al. Using a discrete choice experiment to value the QLU-C10D: feasibility and sensitivity to presentation format. Qual Life Res. 2016;25(3):637-649. doi:1007/s11136-015-1115-3
  47. Hiligsmann M, van Durme C, Geusens P, et al. Nominal group technique to select attributes for discrete choice experiments: an example for drug treatment choice in osteoporosis. Patient Prefer Adherence. 2013;7:133-139. doi:2147/ppa.s38408
  48. Gilbert AW, Mentzakis E, May CR, Stokes M, Jones J. Patient preferences for use of virtual consultations in an orthopaedic rehabilitation setting: results from a discrete choice experiment. J Health Serv Res Policy. 2021:13558196211035427. doi:1177/13558196211035427
  49. Wentink MM, Prieto E, de Kloet AJ, Vliet Vlieland TPM, Meesters JJL. The patient perspective on the use of information and communication technologies and e-health in rehabilitation. Disabil Rehabil Assist Technol. 2018;13(7):620-625. doi:1080/17483107.2017.1358302
  50. Polinski JM, Barker T, Gagliano N, Sussman A, Brennan TA, Shrank WH. Patients' satisfaction with and preference for telehealth visits. J Gen Intern Med. 2016;31(3):269-275. doi:1007/s11606-015-3489-x
  51. Stewart L, Moher D, Shekelle P. Why prospective registration of systematic reviews makes sense. Syst Rev. 2012;1:7. doi:1186/2046-4053-1-7
Volume 11, Issue 10
October 2022
Pages 1991-2002
  • Receive Date: 03 January 2021
  • Revise Date: 10 October 2021
  • Accept Date: 02 November 2021
  • First Publish Date: 03 November 2021