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Abstract
Background: Recent evidence recommended stepwise screening methods for identifying individuals at high risk of type 
2 diabetes to be recruited in the lifestyle intervention programs for the prevention of the disease. This study aims to 
assess the performance of different stepwise screening methods that combine non-invasive measurements with lab-based 
measurements for identifying those with 5-years incident type 2 diabetes. 
Methods: 3037 participants aged ≥30 years without diabetes at baseline in the Tehran Lipid and Glucose Study (TLGS) 
were followed. Thirty-two stepwise screening methods were developed by combining a non-invasive measurement (an 
anthropometric measurement (waist-to-height ratio, WtHR) or a score based on a non-invasive risk score [Australian 
Type 2 Diabetes Risk Assessment Tool, AUSDRISK]) with a lab-based measurement (different cut-offs of fasting plasma 
glucose [FPG] or predicted risk based on three lab-based prediction models [Saint Antonio, SA; Framingham Offspring 
Study, FOS; and the Atherosclerosis Risk in Communities, ARIC]). The validation, calibration, and usefulness of lab-based 
prediction models were assessed before developing the stepwise screening methods. Cut-offs were derived either based on 
previous studies or decision-curve analyses. 
Results: 203 participants developed diabetes in 5 years. Lab-based risk prediction models had good discrimination 
power (area under the curves [AUCs]: 0.80-0.83), achieved acceptable calibration and net benefits after recalibration for 
population’s characteristics and were useful in a wide range of risk thresholds (5%-21%). Different stepwise methods had 
sensitivity ranged 20%-68%, specificity 70%-98%, and positive predictive value (PPV) 14%-46%; they identified 3%-33% of 
the screened population eligible for preventive interventions. 
Conclusion: Stepwise methods have acceptable performance in identifying those at high risk of incident type 2 diabetes. 
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Implications for policy makers
• Stepwise screening methods using non-invasive measurements in combination with lab-based measurements had acceptable sensitivity (up to 

68%) and specificity (at least 70%) for identifying high-risk individuals for type 2 diabetes.
• Using stepwise methods can eliminate the need for lab measurements in about half of the screened population.
• Using stepwise methods can limit the proportion of the population who need preventive interventions in the screened population to less than 

35%.
• Findings from this study can play a key role in designing diabetes prevention programs.
• Findings from this study can be used to optimize screening methods in current national programs for the prevention of non-communicable 

diseases.

Implications for the public
Type 2 diabetes is the most common chronic disease worldwide, causing a lot of morbidity and mortality every year. There is strong evidence showing 
that structured lifestyle interventions can prevent type 2 diabetes among individuals at high risk of type 2 diabetes. One of the main barriers to the 
implementation of structured lifestyle interventions in low- and middle-income countries (LMICs) is the lack of validated and reliable screening 
methods for these programs to identify high-risk individuals. In this study, we developed stepwise screening methods by combining a non-invasive 
measurement with a lab-based measurement; and assessed their performance in predicting the 5-year incidence of type 2 diabetes. We showed 
that our stepwise screening methods had very good performances in identifying high-risk individuals and utilizing them can potentially prevent a 
considerable amount of morbidity and mortality. 
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Background
There is strong evidence showing that structured lifestyle 
interventions can prevent type 2 diabetes among individuals 
at high risk of type 2 diabetes.1-5 These interventions showed 
to be most effective in short terms (<5 years) and among 
individuals at high risk of developing type 2 diabetes.1-3,5 
These lifestyle intervention programs have been integrated to 
the healthcare system in a few high-income countries such as 
Finland,6,7 the United States,8 and Australia,9 as an effective 
component of the public health system for reducing the 
burden of type 2 diabetes. One of the main barriers for the 
implementation of structured lifestyle interventions in low- 
and middle-income countries (LMICs) is the lack of validated 
and reliable screening methods for these programs to identify 
high-risk individuals.10,11

Lifestyle intervention programs used a wide range of 
screening methods for identifying high-risk individuals 
including non-invasive measurements (such as body mass 
index [BMI]), lab-based tests (such as fasting plasma glucose 
[FPG]), or a combination of them (stepwise screening 
methods).1,2 Several studies compared the performance 
of different screening methods for identifying high-risk 
individuals in the structured lifestyle interventions9,12,12; 
showing the superiority of the stepwise methods that combine 
a non-invasive prediction model with a simple blood test such 
as FPG9,12 or a lab-based prediction model.13 The stepwise 
screening methods for identifying high-risk individuals in 
the interventions for the prevention of type 2 diabetes were 
also recommended by the American Diabetes Association 
and National Institute for Health and Care Excellence 
guidelines.14,15 Despite this, there are few studies in LMICs 
that assessed the performance of different stepwise potential 
screening methods for identifying high-risk individuals that 
can be used in lifestyle intervention programs.

Recently, we showed that non-invasive methods including 
several anthropometrics and non-invasive risk prediction 
models have acceptable discrimination for identifying those 
at high risk of type 2 diabetes in the Iranian population 
with waist-to-height ratio (WtHR) among anthropometrics 
and Australian Type 2 Diabetes Risk Assessment Tool 
(AUSDRISK) among non-invasive prediction models 
showing the best discrimination power (area under the curve 
(AUC) >0.70).16-18 Furthermore, we showed that two lab-based 
perdition models for type 2 diabetes namely Saint Antonio 
(SA)19 and Framingham Offspring Study (FOS) 20 have a high 
discrimination power (AUCs ≥0.78) in identifying those at 
high risk of type 2 diabetes in Iranian population 21,22. SA, 
FOS, and the Atherosclerosis Risk in Communities (ARIC) 
23 lab-based prediction models were also showed to have high 
potentials to be used in routine clinical practice.24

In this study, we aim to develop stepwise screening methods 
by combining a non-invasive measurement (WtHR or 
AUSDRISK) with a lab-based measurement (different cut-
offs of FPG or predicted risk based on SA, ARIC, or FOS 
models); and to assess sensitivity, specificity, and positive 
predictive value (PPV) of those screening methods for 
predicting the 5-year incidence of type 2 diabetes. We also 

assessed validation, calibration, and usefulness of SA, ARIC, 
and FOS models for predicting the 5-year incidence of type 
2 diabetes in different risk thresholds in Iranian population.

Methods
Study Population
Tehran Lipid and Glucose Study (TLGS) is a longitudinal study 
in a community-representative sample of Tehran, capital of 
Iran.25 Details of TLGS have been reported previously25; briefly, 
data collection was started in 1999-2001 on 15 005 individuals 
(phase 1) and all participants were re-examined triennially 
(phase 2 and later). Of 15 005 participants, 5630 individuals 
assigned to a community-wide lifestyle intervention program. 
In this study, only participants in the control arm and those 
aged ≥30 years were included (n = 4908). Moreover, 689 
participants with type 2 diabetes at the baseline and 42 further 
participants with pregnancy were excluded. Out of 4177 
eligible participants, 271 participants with no information on 
type 2 diabetes at baseline, 645 participants with no follow-
up, 69 participants with no information on type 2 diabetes 
at follow-up waves, and 155 participants with total follow-up 
<5 years and without incidence of type 2 diabetes during the 
follow-up were excluded, leaving 3037 participants for the 
main analyses. 

Clinical and Laboratory Measurements
The details of clinical and laboratory measurements have 
been reported elsewhere.25 Participants were interviewed to 
obtain demographics, past medical history by completing a 
standardized and validated questionnaire. Physical activity 
level was assessed with the Lipid Research Clinic questionnaire. 
Anthropometric measurements were taken with shoes 
removed and the participants wearing light clothing. For 
measuring blood pressure, the participants remained 
seated for 15 minutes, then a qualified physician measured 
blood pressure two times after one more measurement 
for determining peak inflation level using a standard and 
calibrated mercury sphygmomanometer. A blood sample was 
drawn between 7:00 and 9:00 am into vacutainer tubes from 
all study participants after 12–14 hours overnight fasting. 
For the oral glucose tolerance test, 75 g anhydrous glucose 
was administered orally. FPG and two-hour postprandial 
plasma glucose (2hPG) were measured using an enzymatic 
colourimetric method with glucose oxidase. High-density 
lipoprotein cholesterol (HDL-C) was measured after 
precipitation of the apolipoprotein B containing lipoproteins 
with phosphotungstic acid. Triglycerides were assayed using 
glycerol phosphate oxidase.

Definition of Terms
Type 2 diabetes was ascertained among participants who had 
FPG ≥7.0 mmol/L or 2hPG ≥11.1 mmol/L and/or were taking 
glucose-lowering medication. The event date was considered 
as the half-time between the first date that the type 2 diabetes 
was diagnosed and the last known disease-free date. BMI was 
calculated by dividing the weight in kilograms by the square 
of height in meters. Current smoking was ascertained in 
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those participants who smoked cigarettes at least once a day 
or who smoked cigarettes occasionally. The family history of 
diabetes was defined as having at least one parent or sibling 
with diabetes.

Deriving Cut-Offs for Stepwise Screening Methods
For non-invasive measurement in the stepwise methods, 
either WtHR with a cut-off of ≥ 0.55 or AUSDRISK with a 
cut-off of >15 has been used for this study. Both non-invasive 
measurements showed to have acceptable sensitivity (about 
75%) but low specificities (about 50%) for identifying high-
risk individuals in these cut-offs.16-18

For FPG, cut-offs of 5.0 mmol/L (90 mg/dL), 5.3 mmol/L 
(95 mg/dL), 5.5 mmol/L (100 mg/dL), and 6.1 mmol/L (110 
mg/dL) were used in stepwise screening methods. These 
cut-offs were selected based on the American Diabetes 
Association guideline, the World Health Organization 
(WHO) recommendations, or previous TLGS studies that 
showed a significant rise in the risk of development of type 2 
diabetes from FPGs more than 5.0 mmol/L.21,26,27 

To derive cut-offs for risk predicted by lab-based risk 
prediction models, firstly, models were validated and 
calibrated for predicting the 5-year incidence of type 2 
diabetes in Iranian population; decision curves were then 
used to identify the range of risk thresholds in which models 
can be used in stepwise screening methods. Four cut-offs for 
predicted risks within the range of those risk thresholds were 
derived to be used in stepwise screening methods. 

Thirty-two different stepwise screening methods were 
developed by coupling every possible pair of a non-invasive 
measurement (either WtHR or AUSDRISK) and a lab-based 
measurement (either FPG or a predicted risk based on lab-
based risk prediction model). 

Brief Description of Risk Prediction Models 
A brief description of risk prediction models was provided in 
Supplementary file 1. 

Statistical Analysis
Baseline Characteristics Summarization
The baseline characteristics were summarized as mean 
(standard deviation, SD) values for continuous and 
frequencies (%) for categorical variables in those with 
and without type 2 diabetes after 5 years of follow-up. For 
continuous variables, we test if their distributions follow 
a normal distribution visually (ie, histograms, P-P plots, 
Q-Q plots) and statistically (comparing their skewness and 
excess kurtosis — kurtosis minus three). Since the blood 
level of triglycerides had a high skewness and excess kurtosis 
(skewness = 2.9 and excess kurtosis = 17.7), it was summarized 
by the median (interquartile range, IQR). Comparison of 
baseline characteristics between participants with different 
glycemic status was done by Student’s t test for continuous 
variables, the chi-square test for categorical variables, and 
Mann-Whitney U test for skewed variables. To correct for 
multiple comparisons in baseline characteristics comparisons, 
we used Bonferroni correction, setting the P value threshold 
for statistically significant equal to .002.

Missing Data Imputation
Before validation and calibration of lab-based risk prediction 
models, single imputation was performed to impute missing 
values for variables with missing data. The imputation 
of missing values before the validation of risk prediction 
models has been recommended before.28 For imputing the 
missing values of hip circumference (n = 54), BMI (n = 54), 
waist circumference (n = 55), systolic blood pressure (n = 64), 
and HDL-C (n = 3), linear regressions and for imputing the 
missing values of physical activity (n = 51), family history of 
type 2 diabetes (n = 122) and smoking status (n = 49), logistic 
regressions, were fitted using age, sex, education status, 
self-report of hypertension, hyperglycemia, drug history 
for hypertension, diastolic blood pressure, 2h-PG, total 
cholesterol, and triglycerides, and dyslipidemia as axillary 
variables. 

Models Calibration 
To calibrate each prediction model, logistic regression was 
fitted with type 2 diabetes as the outcome and the linear 
predictor part as the offset variable to calibrate the risk 
prediction model intercept, developing a “calibrated-in-the-
large” model28; furthermore, a separate logistic regression 
was fitted with type 2 diabetes as the outcome and the 
linear predictor part as the only predictor variable to derive 
the calibration slope and new intercept, developing a 
“recalibrated” model.28

Models Validation 
To assess the discrimination power of the models, a receiver 
operating characteristic (ROC) curve was plotted and the 
AUC has been estimated for each risk prediction model and 
FPG. Calibration of the original, calibrated-in-the-large, and 
recalibrated models were assessed visually as well as using 
Hosmer-Lemeshow chi-squared; a Hosmer-Lemeshow Chi-
square higher than 20 was defined as the clear evidence for 
lack of calibration.29 In line with guidelines from Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis Initiative,30 we plotted predicted 
outcome probabilities (x-axis) against observed outcomes 
(y-axis) using a LOWESS (locally weighted scatterplot 
smoothing) line. 

To assess the range of risk thresholds in which the risk 
prediction models are useful, the net benefit of the models 
were plotted in the wide range of risk thresholds to draw 
decision curves.31,32 The net benefits of the risk prediction 
models were compared with the net benefits of two different 
scenarios without screening: treat-none and treat-all.31,32 The 
risk prediction models were useful in a risk threshold if the 
differences between the net benefit of the risk prediction 
model and no-screening methods were equal or higher than 
0.0131,32; cut-off of 0.01 for the difference in the net benefit 
for minimal invasive screening methods has been suggested 
previously.31,32 Based on the range of useful risk thresholds in 
the decision curves, four cut-offs for predicted risk of type 
2 diabetes were derived to be used in stepwise screening 
methods. As the supplementary analyses, all validation 
analyses were repeated in the two different subgroups of 
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participants: those with WtHR ≥0.55 (n = 1466) and those 
with AUSDRISK >15 (n = 1557).

Stepwise Screening Methods Development/Assessment
Thirty-two stepwise screening methods were developed by 
combining a non-invasive measurement (WtHR ≥0.55 or 
AUSDRISK >15) with a lab-based measurement (cut-offs of 
FPG and predicted risk based on each risk prediction model). 
Sensitivity, specificity, and PPV of stepwise methods for 
identifying those with 5-year incident type 2 diabetes were 
assessed. We also assessed the proportion of the screened 
population who need lab tests and the proportion of the 
screened population eligible for preventive interventions 
based on the stepwise screening methods. The proportion 
of the screened population who need lab tests is defined 
as the proportion of participants who identified as high 
risk in the first step of the screening method (WtHR ≥0.55 
or AUSDRISK score >15, whichever appropriate based on 
the stepwise screening method). Based on our suggested 
screening methods, those with WtHR <0.55 or AUSDRISK 
score ≤15 does not need further investigations (ie, lab 
tests). The proportion of the screened population eligible 
for preventive interventions is defined as the proportion of 
participants who identified as high risk in both the first step 
(WtHR or AUSDRISK) and the second step (FPG or lab-based 
risk scores) of the screening method. Based on our suggested 

screening, lifestyle interventions are not recommended for 
those who do not found high-risk in both the first and the 
second steps of the screening method. Corresponding 95% 
confidence intervals (CIs) were derived using bootstrap 
methods (percentile confidence intervals). 

Sensitivity Analyses
In the sensitivity analyses, we further imputed the missing 
values of the type 2 diabetes status in those eligible participants 
who were excluded from the analyses due to missing data for 
type 2 diabetes at baseline examination or after 5 years of 
follow up using similar methods for imputation (n = 1140). 
We also repeated all analyses in participants with complete 
data (n = 2872). All analyses were performed using Stata 
statistical software (version 14 SE).

Results
Baseline Characteristics 
Of 3037 participants, 203 (6.7%) ones developed type 2 
diabetes during 5 years of follow-up. Table 1 compares the 
baseline characteristics of participants by their type 2 diabetes 
status. Participants aged 46 years on average and 55% were 
women. The average WtHR and AUSDRISK score were 0.55 
and 16, respectively, with 49% of participants having WtHR 
≥ 0.55 and 51% of participants having AUSDRISK score >15. 
Those who developed type 2 diabetes within 5 years of follow-

Table 1. Baseline Characteristics of Participants

Characteristics Total (n = 3037) Diabetes Free (n = 2834) Type 2 Diabetes (n = 203) P Valuea

Age 45.86 (11.19) 45.57 (11.14) 49.93 (11.15) <.001
Gender (%)

Female 1685 (55.5%) 1564 (55.2%) 121 (59.6%) .223

Education (%)

Less than 6 years 1134 (37.4%) 1022 (36.1%) 112 (55.4%) <.001

6-12 years 1507 (49.7%) 1432 (50.6%) 75 (37.1%)

More than 12 years 390 (12.9%) 375 (13.3%) 15 (7.4%)

Physically inactive (%) 2217 (74.2%) 2074 (74.4%) 143 (72.2%) .498

Current smoking (%) 456 (15.3%) 429 (15.4%) 27 (13.6%) .513

Weight (kg) 71.77 (12.18) 71.51 (12.09) 75.53 (12.85) <.001

BMI (kg/m2) 27.33 (4.40) 27.19 (4.34) 29.39 (4.74) <.001

Waist circumference (cm) 89.48 (11.02) 89.05 (10.93) 95.63 (10.43) <.001

WtHR 0.55 (0.07) 0.55 (0.07) 0.60 (0.07) <.001

WtHR ≥0.55 1466 (49.2%) 1318 (47.3%) 148 (75.5%) <.001

AUSDRISK score 15.98 (6.00) 15.69 (5.90) 20.22 (5.88) <.001

AUSDRISK score >15 1557 (51.3%) 1408 (49.7%) 149 (73.4%) <.001

Systolic blood pressure (mm Hg) 119.57 (17.86) 118.88 (17.43) 129.37 (20.80) <.001

Diastolic blood pressure (mm Hg) 78.68 (10.25) 78.42 (10.14) 82.38 (11.15) <.001

FPG (mmol/L) 5.06 (0.54) 5.01 (0.51) 5.68 (0.61) <.001

Postprandial plasma glucose (mmol/L) 6.10 (1.67) 5.98 (1.58) 7.85 (1.91) <.001

Cholesterol (mmol/L) 5.54 (1.16) 5.52 (1.14) 5.82 (1.29) <.001

HDL (mmol/L) 1.08 (0.28) 1.08 (0.28) 1.05 (0.26) .081
Triglycerides (mmol/L) 1.70 (1.19, 2.42) 1.69 (1.16, 2.37) 2.12 (1.45, 3.04) <.001

Abbreviations: BMI, Body mass index; WtHR, Waist-to-height ratio; AUSDRISK, Australian Type 2 Diabetes Risk Assessment Tool; FPG; Fasting plasma glucose; 
HDL, high density lipoprotein.
a P value was calculated using Student’s t test for continuous variables and the chi-square test for categorical variables and Mann-Whitney U test for skewed 
variables. To correct for multiple comparisons in baseline characteristics comparisons, we used Bonferroni correction, setting the P value threshold for 
statistically significant equal to .002.
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up were older, had lower education and higher levels of 
weight, BMI, WtHR, AUSDRISK score, systolic and diastolic 
blood pressure, FPG, 2hPG, pre-diabetes, total cholesterol, 
and triglycerides.

Some observations have missing information for hip 
circumference (n = 54), weight (n = 54), BMI (n = 54), waist 
circumference (n = 55), WtHR (n = 55), AUSDRISK (n = 145), 
systolic and diastolic blood pressure (n = 64), and HDL-C 
(n = 3), physical activity (n = 51), family history of type 2 
diabetes (n = 122), education status (n = 6), and smoking 
status (n = 49). The missing values were imputed for further 
analyses.

Validation of Lab-Based Risk Prediction Models
ARIC risk prediction model had the highest discrimination 
power (AUC = 0.83) as compared to SA (AUC: 0.81; P 
value = .004) and FPG (AUC: 0.80; P value = .015) but there 
was no significant difference between AUC of ARIC and 
FOS risk prediction models (AUC: 0.82; P value = .204) 
(Figure 1). Figure S1 shows the ROCs of the models in two 
different subgroups of participants who had WtHR ≥0.55 and 
AUSDRISK >15; in both subgroups, there was no statistically 
significant difference in discrimination power between risk 
prediction models and FPG.

Table S1 compares the equations of original and calibrated 
risk prediction models. The calibration slopes ranged from 
0.96 in SA model and 0.95 in ARIC model to 0.69 in FOS 
model. Figure S2 shows the calibration plot of the original, 
calibrated-in-the-large, and recalibrated models. While the 
original models for ARIC, SA, and FOS risk prediction models 
overestimated the risk (Hosmer-Lemeshow chi-squared 
ranged from 100 to ARIC to 1328 in FOS), the predicted 
and observed risks in recalibrated models were comparable 
showing a reasonably good calibration for all three risk 
prediction models (Hosmer-Lemeshow chi-squared <20). 
Similar findings were observed in those with WtHR ≥0.55 
and AUSDRISK >15 (Figure S3, Supplementary file 2). 

Figure 2 shows the decision curves of the risk prediction 
models. Calibrated-in-the-large models had considerably 
higher net benefits across the different risk thresholds as 

Figure 1. ROC curves. Abbreviations: ROC, Receiver operating characteristic; 
SA, Saint Antonio; FOS, Framingham Offspring Study; FPG, Fasting plasma 
glucose; ARIC, Atherosclerosis Risk in Communities.

Figure 2. Decision Curves of Risk Models. The net benefit of the risk prediction 
models were compared with the net benefits of two different scenarios without 
screening: treat-none and treat-all. The risk prediction models were useful in 
a risk threshold if the differences between the net benefit of the risk prediction 
model and no-screening methods were equal or higher than 0.01; cut-off of 
0.01 for the difference in the net benefit for minimal invasive screening methods 
has been suggested previously. Abbreviations: SA, Saint Antonio; FOS, 
Framingham Offspring Study; ARIC, Atherosclerosis Risk in Communities.

compared to the original models; however, the recalibrated 
models did not perform better than calibrated-in-the-large 
models. Based on the decision curves, the calibrated-in-the-
large versions of SA, ARIC, and FOS prediction models were 
useful between risk thresholds of 4%-23%, 4%-24%, and 
4%-21%, respectively. Comparable findings were observed 
in those with WtHR ≥0.55 and AUSDRISK >15 (Figure S4, 
Supplementary file 2). Based on the results from decision 
curves, predicted risk of ≥7.5%, ≥10%, ≥15%, and ≥20% 
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were selected as cut-offs to be used in developing stepwise 
screening methods.

Stepwise Screening Methods
Thirty-two stepwise screening methods were developed by 
combining a non-invasive measurement (WtHR ≥0.55 or 
AUSDRISK >15) with a lab-based measurement (FPG ≥5.0 
mmol/L, ≥5.3 mmol/L, ≥5.5 mmol/L, and ≥6.1 mmol/L or 
predicted risk based on risk prediction models ≥7.5%, ≥10%, 
≥15%, and ≥20%). Regarding the first step of stepwise methods 
based on WtHR, 49% of participants had WtHR ≥0.55 (95% 
CI: 47; 51), therefore, found eligible for participating for 
the second step of the screening test; the corresponding 
proportion for stepwise methods based on AUSDRISK >15 
was 53% (95% CI: 51; 55). In other words, based on the first 
step of screening methods, 51% of participants in stepwise 
methods based on WtHR and 47% of participants in stepwise 
methods based on AUSDRISK had not high enough risk 
according to require the second step of the screening test that 
involves lab tests. The sensitivity, specificity, and PPV for the 
first step was 74.9% (95% CI: 68.3; 80.7), 50.8% (95% CI: 51.0-
54.7), and 10.2% (95% CI: 8.7; 11.9) for stepwise methods 
based on WtHR and 78.3% (95% CI: 72.0; 83.8), 48.5% (95% 
CI: 46.6; 50.3), and 9.8% (95% CI: 8.4; 11.4) stepwise methods 
based on AUSDRISK, respectively. 

Table 2 compares the sensitivity, specificity, and PPV of 
different stepwise methods of identifying individuals with 
5-year incident type 2 diabetes. The sensitivity of the stepwise 
screening methods ranged from 20% in WtHR ≥0.55-FPG 
≥6.1 mmol/L method to 68% in AUSDRISK >15-FPG ≥5.0 
mmol/L method, and corresponding specificities ranged 
from 98% in AUSDRISK >15-FPG ≥5.0 mmol/L method to 
70% in WtHR ≥0.55-FPG ≥6.1 mmol/L method. Based on the 
different stepwise screening methods, between 3% and 33% 
of the screened population would be eligible for structured 
lifestyle interventions. The risk of 5-year type 2 diabetes in 
those who screened positive (PPV) ranged from 14% to 35% 
based on the different screening methods.

The performance of stepwise screening methods in the 
complete-case analyses and the analyses on data with imputed 
type 2 diabetes status were comparable with the original 
analyses (Tables S2 and S3, Supplementary file 2).

Discussion
Summary of Findings
This is the first study that developed several stepwise 
methods for identifying those at high risk of type 2 diabetes 
and assessed their performance in Iranian population. 
This study also validated three well-known lab-based risk 
prediction models. We showed that, after calibration, lab-
based prediction models are valid tools for the prediction of 
the risk of type 2 diabetes and using them in combination 
with non-invasive measurements can form effective stepwise 
screening methods with acceptable sensitivity (identifying up 
to 68% of individuals with 5-year incident type 2 diabetes) 
and specificity (excluding 70% of individuals without 5-year 
incident type 2 diabetes). Using stepwise methods can also 
eliminate the need for lab measurements in about half of 

the screened population and limit the proportion of the 
population who need preventive interventions to less than 
35%.

Validation of Lab-Based Prediction Models
In the current study, the discrimination power of the lab-
based risk prediction models were good with AUCs >0.80; 
these findings are in line with previous studies that showed 
high discrimination power of these models (AUC >0.80) in 
different populations.21,22,33-36 High discrimination power 
of these models in the Iranian population indicates that lab 
measurements used in these models have high predictive 
power in this population.28,36 In regards with calibration, 
however, the original models overestimated the risk of 5-year 
incident type 2 diabetes in our study that was rectified after 
calibration of the intercept of the ARIC and SA models and 
calibration of intercept and slope of the FOS model.28,36 The 
lack of calibration in the original models might be rooted in 
differences in the follow-up period or ethnicity.28,36 All three 
models in these study were developed to predict the risk of 
the type 2 diabetes in studies with follow-up longer than 5 
years (ranged 7-9 years)19,20,23 and using these models for 
predicting the risk of 5-year incident type 2 diabetes led to 
an overestimation of the risk.28,36 Moreover, previous studies 
showed the important role of ethnicity in the development of 
type 2 diabetes even accounting for other type 2 diabetes risk 
factors.37 Our findings also showed that by simple calibration 
of models, these prediction models can predict the risk of 
5-year incident type 2 diabetes in the Iranian population with 
high validity. These findings were further supported by our 
net benefit assessment of the models that showed calibrated 
models are useful in a wide range of risk thresholds ranged 
from 4% to 21%.

Performance of Stepwise Screening Methods
The stepwise methods developed in this study had acceptable 
performance in identifying those at high risk of developing 
type 2 diabetes with sensitivities ranging from 20% to 68% 
and specificities ranging from 70% to 98%; these findings 
are comparable with those of previous studies.9,12,38 In a study 
conducted by Lee et al,9 six different stepwise methods were 
developed by combining AUSDRISK prediction model and a 
blood test (FPG, hemoglobin A1c [HBA1c], or oral glucose 
tolerance test) with sensitivities ranging from 20% to 47% and 
specificities ranging from 81% to 98%. 

Given the fact that these screening strategies fail to identify 
between one-third to half of the participants with 5-year 
incident type 2 diabetes, one might suggest reducing the 
cut-offs for non-invasive or lab-based measurements to 
increase stepwise screening methods sensitivity. We, however, 
discourage reducing the cut-offs due to some problems 
involved in it. First, lower cut-offs increase the sensitivity of a 
test with the price of a reduction in its specificity and PPV, so 
it means that the population who screened positive based on 
the tests would have a lower risk of developing 5-year incident 
type 2 diabetes. There is strong evidence showing that the 
lifestyle intervention programs have limited effectiveness 
in individuals at low risk of developing type 2 diabetes and 
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Table 2. Performance of Stepwise Methods in Identifying Individuals With 5-Year Incident Type 2 Diabetes

Step 1 Step 2 Sensitivity% 
(95% CI)

Specificity% 
(95% CI)

PPV % (95% 
CI)

The Proportion of Screened 
Population Need Blood Test 

(95% CI)

The Proportion of Screened 
Population Need Intervention 

(95% CI)

WtHR ≥0.55 FPG ≥5.0 mmol/L 66 (59; 72) 73 (71; 75) 15 (13; 17) 49 (47; 51) 30 (28; 31)

WtHR ≥0.55 FPG ≥5.3 mmol/L 58 (51; 65) 83 (82; 85) 20 (17; 23) 49 (47; 51) 20 (18; 21)

WtHR ≥0.55 FPG ≥5.5 mmol/L 47 (40; 54) 91 (90; 92) 27 (23; 32) 49 (47; 51) 11 (10; 13)

WtHR ≥0.55 FPG ≥6.1 mmol/L 20 (14; 26) 98 (98; 99) 46 (35; 56) 49 (47; 51) 3 (2; 4)

WtHR ≥0.55 SA ≥7.5% 60 (52.5; 66) 84 (82; 85) 21 (17; 24) 49 (47; 51) 19 (18; 21)

WtHR ≥0.55 SA ≥10% 53 (46; 60) 88 (87; 89) 24 (20; 28) 49 (47; 51) 15 (14; 16)

WtHR ≥0.55 SA ≥15% 41 (34; 48) 92 (91; 93) 27 (22; 32) 49 (47; 51) 10 (9; 11)

WtHR ≥0.55 SA ≥20% 33 (27; 40) 95 (94; 96) 33 (26; 39) 49 (47; 51) 7 (6; 8)

WtHR ≥0.55 ARIC ≥7.5% 59 (52; 66) 83 (82; 85) 20 (17; 24) 49 (47; 51) 19 (18; 21)

WtHR ≥0.55 ARIC ≥10% 53 (45; 60) 88 (87; 89) 24 (20; 28) 49 (47; 51) 15 (14; 16)

WtHR ≥0.55 ARIC ≥15% 42 (35; 49) 93 (92; 94) 29 (24; 35) 49 (47; 51) 10 (8; 11)

WtHR ≥0.55 ARIC ≥20% 35 (28; 42) 95 (95; 96) 35 (28; 41) 49 (47; 51) 7 (6; 8)

WtHR ≥0.55 FOS ≥7.5% 55 (48; 62) 86 (85; 87) 22 (18; 25) 49 (47; 51) 17 (16; 18)

WtHR ≥0.55 FOS ≥10% 51 (44; 58.5) 89 (88; 90) 25 (21; 30) 49 (47; 51) 14 (12; 15)

WtHR ≥0.55 FOS ≥15% 41 (34; 48) 92 (91; 93) 27 (22; 32) 49 (47; 51) 10 (9; 11)

WtHR ≥0.55 FOS ≥20% 36 (29; 43) 94 (93; 95) 31 (25; 37) 49 (47; 51) 8 (7; 9)

AUSDRISK >15 FPG ≥5.0 mmol/L 68 (62; 75) 70 (68; 71) 14 (12; 16) 53 (51; 55) 33 (31; 34)

AUSDRISK >15 FPG ≥5.3 mmol/L 61 (54; 68) 81 (79; 82) 18 (16; 22) 53 (51; 55) 22 (21; 23.5)

AUSDRISK >15 FPG ≥5.5 mmol/L 48 (41; 55) 89 (88; 91) 25 (20; 29) 53 (51; 55) 13 (12; 14)

AUSDRISK >15 FPG ≥6.1 mmol/L 22 (16; 28) 98 (97; 98) 43 (34; 53) 53 (51; 55) 3 (3; 4)

AUSDRISK >15 SA ≥7.5% 60 (53; 67) 82 (81; 83) 19 (16; 22) 53 (51; 55) 21 (19; 22)

AUSDRISK >15 SA ≥10% 53 (46; 60) 87 (85; 88) 22 (18; 26) 53 (51; 55) 16 (15; 17)

AUSDRISK >15 SA ≥15% 41 (35; 48) 91 (90; 92) 26 (21; 31) 53 (51; 55) 11 (10; 12)

AUSDRISK >15 SA ≥20% 34 (28; 41) 95 (94; 95) 32 (25; 38) 53 (51; 55) 7 (6; 8)

AUSDRISK >15 ARIC ≥7.5% 61 (54; 67.5) 82 (81; 84) 20 (16; 23) 53 (51; 55) 21 (19; 22)

AUSDRISK >15 ARIC ≥10% 52 (45; 59) 87 (86; 88) 22 (18; 26) 53 (51; 55) 16 (14; 17)

AUSDRISK >15 ARIC ≥15% 42 (35; 49) 92 (91; 93) 28 (23; 33) 53 (51; 55) 10 (9; 11)

AUSDRISK >15 ARIC ≥20% 35 (29; 42) 95 (94; 96) 34 (27; 40) 53 (51; 55) 7 (6; 8)

AUSDRISK >15 FOS ≥7.5% 57 (50; 63) 84 (83; 86) 21 (17; 24) 53 (51; 55) 18 (17; 20)

AUSDRISK >15 FOS ≥10% 53 (46; 60) 88 (87; 89) 24 (20; 29) 53 (51; 55) 15 (13; 16)

AUSDRISK >15 FOS ≥15% 42 (34.5; 49) 92 (91; 93) 26 (21; 31) 53 (51; 55) 11 (10; 12)

AUSDRISK >15 FOS ≥20% 36 (29; 43) 94 (93; 95) 29 (23.5; 35) 53 (51; 55) 30 (28; 31)

Abbreviations: WtHR, waist-to-height ratio; AUSDRISK, Australian Type 2 Diabetes Risk Assessment Tool; FPG; Fasting plasma glucose; SA, Saint Antonio; FOS, 
Framingham Offspring Study; ARIC, Atherosclerosis Risk in Communities; PPV, positive predictive value.
Risk of developing type 2 diabetes within 5 years based on calibrated models equals to  1

1 Xe−+
 where:

In SA model, X = -14.714 + 0.028 * age (years) + 0.661 * (1 if female; 0 if male) + 0.481 * (1 if positive family history of type 2 diabetes; 0 if otherwise) + 0.079 
* fasting plasma glucose (mg/dL) + 0.018 * systolic blood pressure (mm Hg) - 0.039 * HDL-C (mg/dL) + 0.070 * BMI (kg/m2).
In ARIC model, X = -10.761 + 0.173 * age (years) + 0.4981 * (1 if positive family history of type 2 diabetes; 0 if otherwise) + 1.5849 * fasting plasma glucose 
(mmol/L) + 0.0111 * systolic blood pressure (mm Hg) + 0.0273 * waist circumference (cm) + 0.0326 * height (cm) - 0.4718 * HDL-C (mmol/L) + 0.2420 * 
Triglycerides (mmol/L).
In FOS, X = -20.999 + log(0.99) * age (years) + log(0.65) * (1 if male; 0 if female) + log(1.55) * (1 if positive family history of type 2 diabetes; 0 if otherwise) + 
log(1.15) * fasting plasma glucose (mg/dL) + log(1.01) * systolic blood pressure (mm Hg) + log(0.96) * HDL-C (mg/dL) + log(1.05) * waist circumference (cm) + 
log(1.04) * BMI (kg/m2).
AUSDRISK score = 3 * (1 if Male; 0 if otherwise) + 2 * (1 if aged between 35-44 years; 0 if otherwise) + 4 * (1 if aged between 45-54 years; 0 if otherwise) + 
6 * (1 if aged between 55-64 years; 0 if otherwise) + 8 * (1 if aged ≥65 years; 0 if otherwise) + 2 * (1 if Middle Eastern; 0 if otherwise) + 3 * (1 if family history 
of diabetes (self-report); 0 if otherwise) + 6 * (1 if history of high blood glucose (self-report); 0 if otherwise) + 2 * (1 if use of blood pressure medication (self-
report); 0 if otherwise) + 2 * (1 if current smoking (self-report); 0 if otherwise) + 2 * (1 if physically inactive (self-report); 0 if otherwise) + 3 * (1 if BMI between 
25-29.9 (kg/m2); 0 if otherwise) + 6 * (1 if BMI between 30-34.9 (kg/m2); 0 if otherwise) + 8 * (1 if BMI ≥30 (kg/m2); 0 if otherwise) + 4 * (1 if WC between 90-99.9 
cm in men or between 80-89.9 cm in women; 0 if otherwise) + 7 * (1 if WC ≥100 cm in men or ≥90 cm in women; 0 if otherwise).
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previous studies recommended to deliver these interventions 
to those with at least 20% risk of developing type 2 diabetes in 
short time.1-5 Therefore, we here recommend those stepwise 
screening methods with PPVs higher than 20%. Another 
problem with lowering cut-offs for stepwise screening 
methods is exposing further pressure on laboratory resources 
and the healthcare system as it requires further laboratory 
tests in the population and leads to a higher number of eligible 
participants, most of whom will be false positives. A practical 
and feasible solution to improve recruitment of individuals 
at high risk of type 2 diabetes is to use readily-available 
information collected during different medical procedures in 
addition to stepwise screening methods. For example, in the 
National Type 2 Diabetes Prevention Program in Finland,7 in 
addition to those who had a high risk of developing type 2 
diabetes based on a stepwise screening method, people with a 
history of elevated blood glucose in their medical records or 
a history of gestational diabetes were recruited in the lifestyle 
interventions. 

We avoid recommending a particular stepwise screening 
method in our study. We instead recommend healthcare 
providers to select the best option based on the acceptability 
of screening methods, available intervention programs, and 
resources in their settings. For example, in case that the 
available preventive interventions are costly and resource-
intensive, a screening method that selected lower proportion of 
the screened population with higher risk would be preferable, 
while in case of inexpensive interventions or settings with 
ample resources, screening methods with higher sensitivities 
would be preferable. One should also consider the potential 
impacts of the screening methods on the outcome of lifestyle 
interventions. Assuming that lifestyle intervention programs 
reduce the risk of type 2 diabetes by 30% in Iranian population 
- which is consistence with previous meta-analyses1–5-, using 
a stepwise screening method with a sensitivity of about 50% 
(such as WtHR ≥0.55-FPG ≥5.5 mmol/L) potentially can lead 
to a reduction in the incidence of type 2 diabetes in the whole 
population by 15%; while the corresponding impact would be 
18% reduction in the incidence of type 2 diabetes in the whole 
population if a stepwise method with a sensitivity of about 
60% (such as WtHR ≥0.55-SA ≥7.5%) will be used.39

We here also highlight the fact that these screening methods 
for identifying those at high risk of type 2 diabetes do not 
eliminate the need for screening for other cardiometabolic risk 
factors or routine check-ups in the community. Undoubtedly, 
we need valid and reliable screening methods as well as 
effective interventions for other cardiometabolic risk factors 
to achieve ideal cardio-metabolic health.

Strengths and Limitations
This study has some strengths and limitations. For strengths, 
to the best of our knowledge, it is the first study that 
developed stepwise screening methods for identifying those 
at high risk of type 2 diabetes in the LMIC and it is the first 
comparative validation study in Iran for these three well-
known risk prediction models. The large sample size is one 
of the main strengths of this study, leading to high precision 
in our estimates. As for limitations, we had a drop-out rate 

of 27%. To address this limitation, we imputed the missing 
information in our sensitivity analyses; the findings of which 
were generally similar to those of original analyses. We used 
Hosmer–Lemeshow Chi-square to assess the calibration of 
the models, while some evidence showed that this test has a 
high rejection rate of acceptable models when large samples 
are used40; to address this limitation, we plotted predicted 
outcome probabilities (x-axis) against observed outcomes 
(y-axis) using a LOWESS line as recommended in guidelines 
by Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis Initiative.30 Moreover, 
we did not use HbA1c cut points to define type 2 diabetes 
in this study. HbA1c did not measure in the different waves 
of TLGS because HbA1c was not introduced as a component 
for diagnosis of type 2 diabetes at the time of designing TLGS 
(year: 1999); it was costly measurement, and there was not a 
standardized method for measurement of HbA1c in Iranian 
population. This limitation might lead to missing a subgroup 
of people with type 2 diabetes with high HbA1C but normal 
FPG and 2hPG; however, this limitation hardly can affect the 
findings of this study since the previous studies showed that 
very small proportion of undiagnosed cases of type 2 diabetes 
have high HbA1c but normal FPG and 2hPG (~0.3%).41

Conclusion
In conclusion, lab-based prediction models are valid 
tools for the prediction of the risk of type 2 diabetes after 
calibration; and using them in combination with non-
invasive measurements can form effective stepwise screening 
methods with acceptable sensitivity and specificity in Iranian 
population. Using stepwise methods can also eliminate the 
need for lab measurements in about half of the screened 
population and limit the proportion of the population who 
need preventive interventions.
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