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Abstract
Background: Health impact assessment (HIA) is a widely used process that aims to identify the health impacts, positive 
or negative, of a policy or intervention that is not necessarily placed in the health sector. Most HIAs are done prospectively 
and aim to forecast expected health impacts under assumed policy implementation. HIAs may quantitatively and/
or qualitatively assess health impacts, with this study focusing on the former. A variety of quantitative modelling 
methods exist that are used for forecasting health impacts, however, they differ in application area, data requirements, 
assumptions, risk modelling, complexities, limitations, strengths, and comprehensibility. We reviewed relevant models, 
so as to provide public health researchers with considerations for HIA model choice. 
Methods: Based on an HIA expert consultation, combined with a narrative literature review, we identified the most 
relevant models that can be used for health impact forecasting. We narratively and comparatively reviewed the 
models, according to their fields of application, their configuration and purposes, counterfactual scenarios, underlying 
assumptions, health risk modelling, limitations and strengths. 
Results: Seven relevant models for health impacts forecasting were identified, consisting of (i) comparative risk assessment 
(CRA), (ii)  time series analysis (TSA), (iii)  compartmental models (CMs), (iv)  structural models (SMs), (v) agent-
based models (ABMs), (vi) microsimulations (MS), and (vii) artificial intelligence (AI)/machine learning (ML). These 
models represent a variety in approaches and vary in the fields of HIA application, complexity and comprehensibility. 
We provide a set of criteria for HIA model choice. Researchers must consider that model input assumptions match the 
available data and parameter structures, the available resources, and that model outputs match the research question, 
meet expectations and are comprehensible to end-users.
Conclusion: The reviewed models have specific characteristics, related to available data and  parameter structures, 
computational implementation, interpretation and comprehensibility, which the researcher should critically consider 
before HIA model choice. 
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Introduction
Health impact assessment (HIA) is a widely-used process for 
identifying the health impacts – both, negative and positive of 
a policy, program, project or other kind of intervention. HIA 
is a tool that can help foresee how a counterfactual may affect 
population health, by systematically assessing associated 
health benefits and risks. The counterfactual accounts for how 
a change in health risk factor exposure distribution under 
a proposed policy, program or intervention may change a 
population’s health status in comparison to the business 
as usual (BAU) or other reference situation.1 The World 
Health Organization (WHO) defines HIA as a combination 
of procedures, methods and tools by which a policy, program, 
or project may be judged as to its potential effects on the health 
of a population, and the distribution of its effects within the 

population,2 and thereby provides a flexible HIA definition. 
HIAs can be carried out prospectively (ie, ex-ante), 

concurrently or retrospectively (ie, ex-post).3 However, as 
implied by ‘assessment’ in contrast to ‘evaluation,’ most HIAs 
are carried-out prospectively to compare health consequences 
under contrasting futures.4 In the context of this article, we 
will also understand HIA as a tool for forecasting policy 
proposals, whereas a comprehensive body of literature exists 
on health impact evaluation (ie, ex-post assessments).5 

Societies usually give considerable weight to their self-
interest in health,6,7 meaning HIAs can generate awareness 
and have a bearing on the policy decision-making process.4 
HIA methods can be qualitative or quantitative in nature. Both 
methods can co-exist and profit from each other.8 Qualitative 
HIA approaches usually draw on evidence that is already 
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available, hence can be carried-out more rapidly and thereby 
might be less resource-intensive, but they may be more prone 
to selective and subjective reporting.3,9,10 Quantitative HIA 
approaches numerically assess the magnitude and direction 
of the expected health impacts of a proposed policy; this 
means they may be of special importance for influencing 
policy, as decision-makers commonly give more weight to 
outcomes that are measurable.3 Quantitative HIA is, unlike 
to qualitative HIA, less sensitive to societal opinions and 
notions, but can usually only consider a selection of health 
risk factors of interest. 

A variety of quantitative HIA models have been used 
to forecast health impacts. However, each of these models 
comprises a different HIA application area, data requirements, 
complexities, assumptions, health risk modelling, limitations, 
strengths and comprehensibility. Thus, the objective of this 
study was to review the most relevant models for prospective 
HIA, in order to provide systematic guidance on model choice 
for future HIA studies.

Methods
To review the models, we combined consultation of HIA 
experts with a narrative literature review. The lead and last 
author of this manuscript (NM and DR) jointly identified 
established experts working on quantitative HIA in various 
fields, including environmental and social epidemiology, 
econometrics, climate change impact modelling, public 
health, computer and data science, and invited them to 
contribute to this interdisciplinary, open discussion on 
health impact modelling. For ease of understanding, it was 
decided that this review should cover the broad field of 
quantitative HIA models. Each expert had worked with at 
least one of the included HIA models in the past, in various 
fields of application, including urban planning, transport or 
environmental sciences, fiscal policies, health care systems 
research, and infectious disease and non-communicable 
disease (NCD) modelling, covering low-, middle- and high-
income policy settings. 

The narrative literature review complemented the expert 
inputs, in order to provide a comprehensive overview 
and model examples. Thus, we did not intend to provide a 
systematic review of the literature, nor do we attempt to 
outline all the conceptual and computational steps of HIA 
models. Rather we aim to provide public health researchers 
with insights into the broad field of prospective HIA models, 
their key features and implications, in a form that may serve 
as basis for model choice. Below, we review each model 
individually and relate them to quantitative HIA application. 
We acknowledge, however, that models are often combined, 
integrated and hybrid-models exist, and models cannot 
always be as easily distinguished as we do in this review. 

Key Health Impact Modelling Issues 
Available data, their respective structures, and the context of 
the assessment are of high relevance to HIA model choice. 
From the outset of model development, researchers should 
work with the end-users (eg, communities affected by the 
respective policies and their advocates, policy-makers, 

practitioners, etc), so as to ensure that the questions asked 
and analysis performed are feasible, relevant, comprehensible, 
timely and resource-efficient, while mutual expectations are 
met.8 In this regard, there is value in qualitative methods 
that complement the quantitative implementation of HIA 
models, as there is a considerable body of literature that 
stresses the importance of citizens’ participation in planning 
and decision-making processes,11,12 and an increased need 
for participatory, quantitative HIA implementation has 
previously been identified.8 

Model Comparison
To comparatively review the models in terms of application 
potential for HIA, we developed a data extraction tool based 
on eight criteria (Table). The criteria and their definitions are: 
1)	 Configuration: Core model functioning and unit.
2)	 Counterfactual scenario: Definition of scenario 

construct and comparative elements (ie, BAU with 
policy scenario comparison).

3)	 Objectives/purpose: Defines how model outcomes 
should be treated and interpreted. 

4)	 Assumptions: Underlying assumptions regarding 
policy effects, population and disease characteristics, 
data structures and parameters. 

5)	 Health risk function: Health risk modelling or risk 
extrapolation to establish associations between 
exposure level changes due to policy effect and health 
outcomes. 

6)	 Complexity: Model construct and implementation 
complexity, linear versus dynamic, consideration of 
heterogeneity versus homogeneity, consideration of 
covariates, interactions, adaptation, etc. 

7)	 Limitations: Model prerequisites and limits. 
8)	 Strengths: Model strengths and advantages.
We also developed a flowchart (Figure 1) intended to 

guide researchers in their HIA model choice, considering the 
research question and field of HIA application, available data 
structures and resources, model functioning and specifics, 
and interpretation of model outputs.

Results
We identified seven HIA models, that have been used or have 
the potential to forecast health impacts of policy proposals. We 
comparatively summarized the models in Table.  Moreover, 
Figure 1 provides key considerations for HIA model choice.

The seven reviewed models are: (i) comparative risk 
assessment (CRA), (ii) time series analysis (TSA), (iii) 
compartmental model (CM), (iv) structural model (SM), (v) 
agent-based model (ABM), (vi) microsimulations (MS), and 
(vii) artificial intelligence (AI)/machine learning (ML). 

Comparative Risk Assessment
In CRA the health impact due to an observed health risk factor 
exposure distribution in a population (ie, BAU) is compared 
with the health impact under a hypothetical health risk 
factor exposure distribution (ie, counterfactual), representing 
the policy proposal.13 CRA aim to provide a standardized 
and comparable estimate of the expected health impact of 
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Table. Analytical Models for Forecasting of Health Impacts in Health Impact Assessment 

Model Configuration Counterfactual 
Scenario Objective/Purpose Assumptions Health Risk Function Complexity Limitations Strengths

CRA •	 Comparison of BAU vs 
counterfactual (typically 
non-healthcare policy), 
to assess typically NCD 
impacts 
•	 Model unit: population-
level

•	 Comparison of 
health impacts 
based on assumed 
change in health 
risk factors 
exposure levels 
associated with 
policy

•	 Standardize and 
compare health risks and 
benefits resulting from 
the change in health risk 
factors exposure levels
•	 Provide net health 
impact of policy effect

•	 Non-temporal model, 
compares two scenarios 
with and without change 
in exposure levels
•	 Frequent assumption 
of immediate, perfect 
implementation of policy 
and build-up of health 
impacts

•	 Risk extrapolation 
from literature, no risk 
modelling 

•	 Change in exposure 
level leads to change 
in health status, static, 
unidirectional, no 
feedback
•	 Limited 
consideration 
of population 
heterogeneity and 
covariates

•	 Questionable generalizability 
of risk extrapolation across 
populations
•	 Exclusive consideration of 
previously quantified health risk 
factors
•	 Cannot account for 
demographic or disease burden 
changes over time
•	 Limited accounting for 
competing causes of disease 

•	 Simple but robust model 
if risk generalizability across 
populations holds true
•	 High comprehensibility by 
end-users
•	 Resource-efficient (time, 
money, computational 
skills)

TSA •	 Considers the ordered 
sequence of values of a 
variable (health outcome) 
at equally spaced time 
intervals and assumes past 
values of sequence to be 
good predictor of future 
values
•	 Model unit: population-
level

•	 Prediction of 
post-intervention 
period under 
assumption that 
intervention would 
not have been 
implemented 

•	 Forecasting future 
values of sequence based 
on historical trajectory
•	 Comparison of 
regression slopes of 
implemented policy vs 
BAU (retrospective/ex-post 
HIA)

•	 Past values of variable 
are predictors of future 
values
•	 Time is independent 
•	 Assumptions of 
autocorrelation (data 
points have internal 
structure), seasonality 
(periodic fluctuations), 
stationarity (constant 
mean and variance)

•	 (Univariate) regression 
of future values with set 
of past values 
•	 No consideration 
of covariates, except 
dynamic regression 
models
•	 Researcher chooses 
correlation structure

•	 Mostly static, 
forecast of future 
values based on 
past values, all other 
parameters held 
constant
•	 Limited consideration 
of population 
heterogeneity and 
covariates
•	 Unidirectional, no 
feedback

•	 Availability of historic data
•	 Reliability depends on 
correctly identifying and 
accounting for time trends
•	 Health outcomes are rarely 
stationary 
•	 Structural breaks lead to 
instability 
•	 Retrospective/ex-post HIA 
only as policy is implemented

•	 Robust model if detailed 
time-series data is available 
and past is indeed good 
predictor of future 
•	 Resource-efficient (time, 
money, computational 
skills)

CM •	 Individuals are 
assigned to health-state 
compartments, they 
progress along 
•	 Used to estimate 
health-state transitions 
for infectious/NCD 
developments and how 
policies may change these 
transitions
•	 Model unit: population-
level

•	 Comparison 
of BAU vs policy 
scenario and 
changed health-
state transition 
probabilities 

•	 Forecast infectious/NCD 
evolution, considering 
disease and population 
specific health-state 
transition probabilities

•	 Compartmental 
applications (aggregation 
of individuals into health 
states)  
•	 Individuals in each 
compartment have same 
transition probability  

•	 System of ordinary 
differential equations
•	 Mostly risk 
extrapolation from 
literature, but also risk 
modelling (researcher 
decides on model 
parameters)

•	 Models range 
from simple to 
complex, depending 
on number and 
relationships between 
compartments, 
consideration of 
heterogenous 
population and disease 
characteristics

•	 Same health state transition 
probability for all individuals 
(population proportions) in the 
same compartment
•	 Different models for the same 
infectious/NCD, depending on 
which population and disease-
specific characteristics are 
considered 

•	 Robust model for 
compartmental disease and 
population characteristic 
transitions
•	 Basic models are 
resource-efficient (time, 
money, computational 
skills)
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Model Configuration Counterfactual 
Scenario Objective/Purpose Assumptions Health Risk Function Complexity Limitations Strengths

SM •	 Forecasts health 
impacts using regression 
analysis, considering 
interdependencies 
of endogenous and 
exogenous factors on 
causal pathway
•	 Model unit: population-
level

•	 Comparison BAU 
vs policy scenario 
and changing 
endogenous 
and exogenous 
parameters to 
represent policy 
effects under 
varying conditions 

•	 Forecasts policy 
impacts under different 
conditions and 
environments, considering 
interdependencies 
of endogenous and 
exogenous factors on 
causal pathway

•	 Policy effect differs 
according to different 
conditions and 
environments studied 
•	 Causal 
interdependencies of 
varying endogenous and 
exogenous factors lead to 
differential policy effects 

•	 Multivariate regression 
analysis used for 
prediction
•	 Change of parameters 
to represent policy effect 
•	 Risk modelling 
(researcher decides on 
model parameters)

•	 Functional forms of 
equations affect model 
estimation
•	 Need for good 
data- and theory-
driven insight into 
interdependencies 
of endogenous and 
exogenous factors on 
causal pathway

•	 Researcher decides on model 
parameters, which influences 
results, as it is impossible to 
capture every endogenous and 
exogenous factor of reality 
(limited system)
•	 Fully-specified models needed 
to reduce uncertainty
•	 Resource-intensive (time, 
money, computational skills)

•	 Considers varying effects 
under varying conditions 
and environments 
(interdependencies of 
endogenous and exogenous 
factors)
•	 Goes beyond conclusions 
of conventional empirical 
studies that provide 
reduced-form causal 
relationships 

ABM •	 A set of agents with 
defined attributes on the 
micro-scale interact with 
and adapt to each other 
and their environment 
over space and time, 
and produce social 
phenomenon on macro-
scale
•	 Model unit: individual-
level

•	 Comparison 
of BAU vs policy-
induced changes in 
the environment 
and/or agent’s 
properties, rules 
actions and 
interactions

•	 Bridging individual-
level assumptions and 
population-level dynamics 
and thereby exemplifying 
a complex social 
phenomenon
•	 Uncover adaptive 
system responses that can 
help understand the long-
term policy impact

•	 Researchers chooses 
agent’s properties, 
rules, actions, time and 
environment and thereby 
causal mechanisms
•	 Simplification of the 
real-world, best if data 
and theory-driven

•	 Causation via a social 
phenomenon
•	 Computational model
•	 Risk extrapolation 
from literature, or risk 
modelling (researcher 
decides on model 
parameters) 

•	 Highly complex 
(modeling agent 
interaction, adaptation 
and feedbacks)
•	 Detailed individual-
level data required

•	 Sensitivity to modeling 
decisions made by researcher
•	 Potential lack of transparency 
on causal pathways and 
uncertainties involved
•	 Lack of real-world data for 
model calibration and validation
•	 Potentially limited 
comprehensibility by end-user
•	 Resource-intensive (time, 
money, computational skills)

•	 Complex system insight 
into causal mechanisms and 
adaptive system responses
•	 Consideration of agent 
heterogeneity (properties, 
rules, actions), interaction 
and adaptation 
•	 Useful to study social 
phenomenon that arises 
from changing dynamics at 
micro-level

MS •	 Individuals’ trajectories 
are simulated, with 
transitions between states 
and conditions over time, 
but with no interaction 
and adaptation
•	 Model unit: individual-
level

•	 Comparison 
BAU vs policy-
induced changes 
of individuals’ 
trajectories

•	  Provide detailed policy 
impact for individuals or 
subgroups and thereby 
gain insight into equity 
implications 

•	 All unit-level 
parameters need to be 
known or are reasonably 
imputable 

•	 Multivariate regression 
analysis used for 
prediction
•	 Risk extrapolation 
from literature, or risk 
modelling (researcher 
decides on model 
parameters) 

•	 Highly complex 
(modeling individuals’ 
trajectories) 
•	 Detailed individual-
level data required

•	 Difficult to explain in detail 
•	 Potentially limited 
comprehensibility by end-user
•	 Resource-intensive (time, 
money, computational skills)

•	 Individuals’ trajectory 
insight 
•	 Consideration of 
population heterogeneity 
(policy effects and health 
outcomes)

AI/ML •	Computer algorithms 
recognize patterns in 
complex and changing 
data and learn from them
•	Model unit: individual-

level

•	 Supervised 
learning predicts 
a particular social 
phenomenon 
by discovering 
relevant patterns 
in data

•	 Algorithm is trained to 
detect pattern in data and 
can detect them under 
changing data structures

•	 A set of rules is applied 
to the algorithm that 
leads to the recognition 
of the desired pattern 
and the algorithm evolves 
by learning from it

•	 Computational model
•	 Risk modelling 
(algorithm decides on 
simulation parameters 
and functional forms) 

•	Highly complex 
(algorithm 
development) 

•	Quickly-evolving field with no 
standards defined
•	 Difficult to explain in detail 
•	Overfitting of data limits 
forecasting performance 
•	 Limited comprehensibility by 
end-user 
•	 Resource-intensive (time, 
money, computational skills)

•	 Insight into complex, 
real-world non-linear 
associations under changing 
data and conditions

Abbreviations: ABM, agent-based model; AI, artificial intelligence; HIA, health impact assessment; BAU, business as usual; CM, compartmental model; CRA, comparative risk assessment; ML, machine learning; MS, microsimulations; SM, 
structural model; TSA, time series analysis; NCD, non-communicable disease.

Table. Continued
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shifting from the BAU to the counterfactual scenario, and 
the distribution thereof among the population.13,14 CRA, in 
comparison to the other models, should be understood as 
a comparison of BAU with an alternative “future” scenario, 
and therefore, CRAs are more static and can only restrictedly 
consider temporal elements such as an aging population. 
CRAs typically deal with long-term exposure and NCD 
outcomes (eg, changes in premature deaths, cases of NCDs),13 
can consider multiple health risk factors and aim to provide 
a net health impact (ie, positive or negative) of the policy 
proposal.13,15 Steps in CRA are commonly (a) definition of 
counterfactual (ie, policy proposal); (b) identification of 
health risk factors of interest; (c) estimation of population 
health risk factor exposure distribution; (d) selection of health 
outcomes of interest; (e) selection of exposure-response 

functions (ERFs) from the scientific literature to quantify 
the association between the health risk factor exposure 
level and the health outcome; (f) combination of health risk 
factor exposure data and ERFs for each population subgroup 
under consideration; (g) quantification of the magnitude of 
the expected distribution of health impact in the population, 
typically via potential impact fractions; (h) quantification of 
uncertainty and provision of the range of the potential effect.16 

Application in Health Impact Assessment
CRA is frequently used in HIA studies, with the counterfactual 
scenario representing the policy proposal (often non-
healthcare) under study, and therefore an alternative 
“future.” Common assumptions are immediate and perfect 
implementation of the policy, as well as homogenous uptake 

Figure 1. Flowchart for Health Impact Assessment Model Choice Considerations. Abbreviations: HIA, health impact assessment; BAU, business as usual. 
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and unfolding of policy effects among the population. CRA 
typically draws on health risk functions (ie, ERFs) from 
previous studies on the assumption that they are generalizable 
to the study population. Typically, simple CRAs are static and 
cross-sectional, meaning they simply compare BAU with an 
alternative health risk factor exposure distribution. They hold 
all population parameters constant, do not consider potential 
varying health risks for subgroups, and assume unidirectional 
relations from cause to effect (ie, no feedback). 

Common limitations include a selective consideration of 
previously quantified health risk factors and disregard of 
potentially important factors with weak evidence base; limited 
consideration of interactive, synergetic effects of multiple 
health risk factors, leading to potential double-counting of 
health impacts17; lack of temporal considerations (eg, changing 
population structure over time) and inability to account for 
competing causes of disease18; frequent assumption of no 
time-lags in health impacts (ie, immediate impacts); the lack 
of consideration of required individuals’ behavior change19; 
limited consideration of benefit-risk trade-off distortion 
when comparing long-term benefits with immediate risks 
(eg, long-term health benefits of physical activity compared 
to the immediate risk of suffering a traffic accident, related to 
a policy that promotes cycling for transport19); questionable 
generalizability of health risk functions (ie, ERFs) as they 
are extrapolated from another population20 and capture the 
population rather than individual-level. 

Despite its uncertainties and limitations, strengths of CRAs 
are that they can be carried out relatively rapidly, are less data 
and resource intensive than other HIA models (eg, models that 
estimate individuals’ trajectories, such as ABM or MS), and 
provide an evidence-based, health net impact that can be used 
to inform the policy decision-making process with a typically 
high comprehensibility for end-users (eg, communities 
affected by the policy and their advocates, policy-makers, 
practitioners, etc). CRAs have been widely used, for instance, 
to model comparatively a wide range of health risk factors 
within the Global Burden of Disease study,21,22 or more 
specifically, to model city-specific the health impacts of urban 
and transport planning interventions.23-25 

Time Series Analysis
Time series data refers to a time sequence of observations of a 
certain variable, usually at equal time intervals and for a single 
unit of analysis, eg, an individual or a geographic region, etc. 
TSA typically draws on the assumption that the past is a good 
predictor of the future. Several TSA models are available 
to forecast health outcomes. Considering the nature of the 
outcome variable, temporal dependence, and covariates, 
guide in selecting the most suitable model. 

The autoregressive (AR) model assumes the value of a 
variable at a given moment is dependent on its value at previous 
time points (ie, autocorrelation), and regresses the current 
value with a set of past observations of the sequence. The 
autoregressive moving average (ARMA) model additionally 
introduces temporal dependence of the random errors, 
meaning the assumption that the next observation is the mean 
of all past observations. The AR and ARMA models both 

rely on the assumption of stationarity, which implies that the 
mean and variance are constant over time (ie, non-seasonal, 
and when the time-series fluctuates, it does so uniformly 
around a particular time). Since the stationarity assumption is 
commonly unrealistic in health outcomes, as they usually have 
a seasonal component, the ARIMA (autoregressive integrated 
moving average) model is preferred, which accommodates 
non-stationary behaviors in time-series.26 ARIMA models 
achieve stationarity by taking a series of differences, ie, 
measuring how many non-seasonal differences are needed 
to achieve stationarity. As usual in statistical modelling, the 
ARIMA model consists of identification, estimation and 
application. During the identification step, autocorrelation 
and partial autocorrelation functions check seasonality, 
and other trends in the series. These steps allow to find the 
appropriate linear model for which parameters are estimated 
through the maximum likelihood estimation. Finally, the 
model is applied to make forecasts for future points in time. 

Application in Health Impact Assessment
TSA are substantially different from other HIA forecasting 
models, because they can only predict, based on historic 
data, what would have happened if the counterfactual (ie, 
policy) would not have been implemented. Extended TSA 
models can overcome this limitation: The interrupted time 
series (which may be AR, ARMA, or ARIMA), is a quasi-
experimental method used to estimate the impact of a policy 
implemented at given moment over a single time-series. 
Interrupted time series, however, do not allow the inclusion 
of covariates; that is, traditional ARIMA models assume an 
outcome depends only on its past levels. In contrast, regression 
models can consider the influence of covariates but not the 
temporal dependence of the time-series. Dynamic regression 
models, which may be considered extended ARIMA models, 
overcome these limitations and can simultaneously include 
covariates and account for temporal dependence,27,28 to give a 
flexible forecast of the post-intervention period. 

Nevertheless, the above approaches require multiple 
observations that are taken pre- and post-policy to robustly 
assess the impact, and are therefore mostly applied in 
retrospective HIA. The effect of the policy is evaluated by 
comparing differences in the regression slopes – that is, the 
difference in the trajectory of the health outcome of interest 
under the counterfactual (ie, policy implemented) compared 
to the BAU. However, TSA may be used for forecasting if the 
historic trajectory is known and the researcher has an idea 
of how a policy may change this trajectory (ie, the change in 
regression slopes). Examples of retrospective HIA using TSA 
include modeling the impact of an Australian health policy 
restricting the conditions under which an antipsychotic 
medicine could be subsidized, predicting the number of 
monthly drug dispensings,29 or assessing mortality impacts of 
air quality changes due to a Hong Kong shipping emission 
policy.30

 
Compartmental Models 
CMs are typically used for modelling infectious diseases but 
may also be used to model NCDs. The main CM assumption 
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is that the individuals composing the study population can 
be aggregated into (mutually-exclusive) compartments, 
according to their health status, and proportionally move 
from one compartment to another, as their health status 
changes. CMs are usually run with a system of ordinary 
differential equations, and may be deterministic or stochastic. 
One of the simplest models in infectious disease research is 
the Susceptible-Infected-Recovered model. In the model, 
all individuals are susceptible to the disease at the begin of 
the epidemic and there are one or more initially infected 
cases. The progression from S to I, at each time step, is 
usually defined by the product of the number of susceptible 
individuals, the number of infected individuals, and the 
effective contact rate (ie, the proportion of contacts that 
transmit the disease). The recovery rate – the percentage of 
infected individuals that recover at each time step – is another 
fundamental parameter in a Susceptible-Infected-Recovered 
model. More sophisticated CM models are typically used, 
being customized to the infectious disease and population 
of interest, considering demographics or other heterogenous 
population characteristics. As a result, the same disease can 
be modeled through different CMs, depending on which 
parameters are included in the model.31 

For NCDs, various CMs exist. For instance, the 
RIVM Chronic Disease Model represents 28 NCDs with 
compartmental transitions occurring due to changes in 
risk factor classes, incidence, remission, disease progress, 
and mortality.32 Also, multistate lifetables can generally 
be understood as CMs as well, as they follow a population 
experiencing state transitions over time as they age, given 
changing transition rates and probabilities,33 and (often) the 
simplifying assumption that diseases occur independently of 
one another.18 The proportional multistate lifetable allows to 
model for multiple diseases as proportions of the population 
can co-exist in more than one compartment, which relaxes 
the assumption that compartments are mutually-exclusive.34 

Application in Health Impact Assessment
CMs have been widely used to assess infectious disease 
interventions, including both, vaccination strategies,35 and 
non-pharmaceutical interventions, such as wearing face 
masks for preventing the spread of COVID-19.36 NCD 
intervention strategies have also been assessed, where the 
counterfactual, ie, the proposed policy, generally represents 
changed transition probabilities relative to BAU. For instance, 
multistate lifetables have been used to model health outcomes 
of policies targeting modifiable health risk factors, such as 
physical activity or obesity.18

Structural Models 
SMs consider how a specific (health) outcome relates to relevant 
exogenous factors in the specific environment studied, ie, the 
potential interactions and interdependencies of a policy with 
other existing policies (macro-level), and endogenous factors, 
ie, individual characteristics and behaviors (micro-level).37 
Therefore, SMs provide a framework for understanding 
how changes in health outcome might relate to distinct 
environments and conditions. 

The researcher needs to define the variable the model 
shall compute (ie, health outcome), and which endogenous 
and exogenous variables to include based on the structural 
connections between them. There may be multiple plausible 
models that fit the data equally well. Therefore, the researcher 
needs to look at the satisfying description of the behavior 
of the included variables, by checking the available data 
against theory. Hence, the researcher needs to define a set of 
formulations with unknown parameters, compute for each 
formulation the values which give the best explanation of past 
evolutions, using as criteria statistical testing and compliance 
to theory. The model estimation can call for the introduction 
of new variables, or changes in their definitions. Once the 
model is satisfactorily estimated it can be used for forecasting. 
SMs can rely on linear methods, but more typically SMs are 
composed of non-linear estimations and dynamic stochastic 
models.38 

Application in Health Impact Assessment
SMs can be used to forecast policy impacts, by drawing on 
the BAU estimated regression models and changing their 
parameters to represent the policy, and its impacts on the 
interdependencies of the endogenous and exogenous factors 
in the model.5,39 Unlike reduced-form estimations, which 
consider a one-way relationship between an intervention and 
an outcome, SMs explicitly specify interdependencies between 
endogenous and exogenous variables, and therefore, provide 
insight into indirect effects, mechanisms and factors that lay 
on the causal pathway.40 SMs are widely used in econometrics, 
however, are increasingly being used in health research. For 
instance, SMs have been applied to forecast the impacts of 
fiscal policies (eg, restrictions or expansions of fund transfers 
from government to municipalities) on different health 
indicators in Brazil (eg, infant mortality, antenatal care visits, 
access to primary care, premature mortality).41 

Agent-Based Models
ABMs are simulation models that may predict the appearance 
of a macro-scale social phenomenon, that arises from 
changing the dynamics on the micro-scale (ie, agents’ 
behaviors, actions and interactions in a system).42 In ABMs, 
agents are autonomous individuals/units that behave 
according to given decision-making rules, within a specified 
institutional environment (eg, under certain policies), and 
in defined-interactions, including feedback-interactions. In 
contrast to other models, ABMs allow agents to adapt (either 
biologically or behavioral via learning) to each other and 
their environment over time.43 By explicitly modelling every 
individual, ABMs have the advantage that no population-
level aggregation is needed, allowing for representation 
of real-world heterogeneity of individuals (eg, biological, 
behavioral, demographic diversity, etc). Moreover, ABMs can 
take different spatial structures across space and time, which 
are difficult to represent with other models that rely on mean-
field approximations and aggregation.43 

The different elements in ABMs can be organized according 
to the “Properties, Actions, Rules, Time, Environment” 
framework.43 Properties, actions and rules define the agents, 
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while time and environment define the context. Properties 
are individual characteristics of the agents, actions define the 
specific behavior of the agents and can lead to a change in the 
agent’s own properties or rules, the properties of other agents, 
and the environment. For every action included, the researcher 
must define rules under which the action is triggered, and 
each action must have consequences. Rules define how agents 
choose actions, change properties and interact with each other 
and their environment. Time is the unit in which change in 
rules, actions, properties or environment are defined. The 
environment provides the boundaries and context for the 
agents and their interactions and can change over time as a 
result of agent action or as a result of an intervention policy. 

In ABMs, events occur either by chance, according to 
probability distributions defined by the researcher, or 
deterministic behavioral rules not subject to chance.44 Hence, 
in ABMs some elements remain beyond empirical observation, 
while other elements are statistically estimated,44 for instance, 
by drawing and extrapolating health risk functions from the 
literature to the agents based on their individual exposure and 
risk.

ABMs are complex and flexible to work with, which is part 
of their power and at the same time limits them. Assumptions 
on properties, actions, rules, time and environment need to 
be well grounded and are best if data-driven or theory-based. 
In contrast to other models, ABMs cannot be compactly 
described by a set of mathematical equations, which makes 
it difficult to critically assess them. To overcome this, it has 
become practice to accompany ABMs with “Overview, Design 
Concepts and Details plus Decision-Making” criteria, which 
aim to standardize the model description.45 Translating an 
ABM design into computational code is challenging, specific 
choices of functional form or algorithms can affect the results 
of an ABM, and one can get lost in translation during the 
conceptual to computational transition.43 

Application in Health Impact Assessment
With regards to HIA, ABMs are useful to explore the 
potential impacts of policies in dynamic social and physical 
environments, therefore, considering non-linear relations and 
being performed under more realistic conditions. ABMs can 
unveil adaptive and potentially diverse responses, and thus, 
provide insight into differential policy uptake and impacts. 
ABMs have been applied in the field of social epidemiology, eg, 
modelling the associations between gender, socio-economic 
status and smoking behavior,46 and income inequalities, 
residential segregation and dietary intake.47 Recently, ABMs 
have been applied to demonstrate the effect of social distancing 
(micro-scale) on reducing the spread of COVID-19 (macro-
scale).48 

Microsimulations
MS are increasingly being used in public health research 
because of their ability to evaluate intervention effects 
considering population heterogeneities.49 MS are able to 
simulate the differential effects of policies across specific 
subgroups, and therefore also provide insight into health 
equity implications.50,51 The MS modelling process is based 

on the simulation of each unit (ie, individuals, municipalities, 
regions, etc) that compose the population under study, 
according to mutually-exclusive and collectively-exhaustive 
health states.52 In contrast to ABMs, in MS, individual units 
do not take decision-based actions nor interact. 

MS represent a bottom-up approach to obtain population-
level results: MS simulate the trajectories of all units and 
summarize individual unit results to obtain aggregated 
population-level insight. In MS, each unit changes its state 
based on unit-specific transition probabilities, which makes 
MS models different from CMs where the same transition 
probability applies to all units in a given compartment. MS 
transition probabilities can follow the Markov assumption 
assuming that the transition probability depends only on 
the current state, can consider the states or values of other 
demographic and socioeconomic variables of the unit, or 
other more complex transition rules.53 MS models follow 
a cohort of individuals/units and either estimate health 
risk functions (ie, ERFs) for this cohort directly, or more 
commonly take and extrapolate health risk functions from 
the literature. A useful distinction of MS is between static or 
dynamic: the static models seek to reproduce the impact of a 
policy on the units at a given time point, while the dynamic 
models track unit trajectories and transitions over time.54

Application in Health Impact Assessment
MS represent a powerful tool to simulate the impact of policies 
with a high level of precision not achievable with other 
models. MS could be considered among the most flexible 
models to evaluate policies on different population and health 
outcomes and MS can consider interaction and synergistic 
effects of multiple health risk factors. However, MS require 
large amounts of data to holistically represent individuals’ 
heterogeneity. MS usually require the construction of 
complex codes that use parallel computing and are time and 
computationally demanding.52 To overcome these barriers, 
in the context of public health research, some user-friendly 
platforms have been created to allow policy-makers and 
practitioners to develop customized HIAs and to facilitate 
and speed-up the execution of MS,55 such as the UK Health 
Forum microhealth simulation model56 and the Organization 
for Economic Cooperation and Development Strategic Public 
Health Planning model.57 Further examples of MS application 
in the context of public health research include: estimations of 
the impact of sugar-sweetened beverage taxation on obesity in 
India,58 the effects of fiscal policies on premature mortality in 
Scotland,59 and recently, the cost-effectiveness of COVID-19 
control strategies in South Africa.60

Artificial Intelligence/Machine Learning 
AI is a broad scientific discipline, aiming to understand and 
disentangle complex non-linear systems. Despite being a wide 
discipline, the most popular areas of AI is ML, which refers to 
the study of computer algorithms that develop automatically 
by recognizing patterns in data and learning from them. 

ML is divided in two main areas, supervised and non-
supervised learning. Supervised learning tackles predictive 
problems, with the aim to gain insight into a particular 
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phenomenon, emerging from labeled data observations the 
algorithm is trained with.61 Unsupervised learning solves 
grouping problems or characterization of interactions between 
variables, and helps to find unknown patterns in data, with the 
algorithm trying to learn from underlying data structures.61 
Two common unsupervised learning tasks are clustering 
and dimensional reduction. In clustering, the algorithm 
attempts to group data observations into meaningful clusters 
(eg, grouping patients with similar disease evolution, etc). In 
dimensional reduction, the algorithm reduces the number 
of variables by identifying redundant or noisy attributes and 
grouping similar or correlated attributes for better model 
training. 

Among ML models, artificial neural networks (ANNs) have 
been developed as a computational analogy of brain networks 
of neurons to learn complex functions from data in order 
to predict (health) outcomes non-linearly. ANNs can solve 
problems that would be too complex for classical statistical 
methods as ANNs have self-learning capabilities that enable 
them to adapt and produce results as data is changing or more 
data becomes available. ANNs are built like neuron nodes of 
the human brain, called processing units, interconnecting a 
web. The processing units are made up of input and output 
units. The input units receive various forms of data and based 
on an internal weighing system and activation functions, the 
ANN attempts to learn and produce an output report. An 
ANN initially goes through a training phase where it learns 
to recognize patterns in data. During this supervision, ANN 
compares the actual output produced with what it was meant 
to provide. The difference between both outputs is adjusted by 
correcting the weights of the connections until the difference 
between actual and desired outcomes has the lowest possible 
error. 

In comparison to more traditional statistical methods, ML 
tends to be free of distributional assumptions that often are 
violated in real-world applications and they can account for 
non-linear relationships in a longitudinal manner. Instead 
of the researcher defining the model parameters, it is the 
computer that decides which parameters to include to best 
represent the data and reveal complex patterns. ML algorithms 
can examine larger data sets and disentangle patterns much 
quicker than other traditional methods. While freedom of 
distributional assumptions could be considered a strength, 
ML methods are limited by the characteristics of the training 
database by fitting it extremely well (ie, overfitting problem), 
ignoring potentially important real-world aspects that are not 
included in the training database.62,63 

Application in Health Impact Assessment
ML is increasingly being used in public health/HIA research 
and has been used to predict healthcare outcomes either 
numerically or qualitatively,61 eg, describing diagnostics, by 
drawing on supervised learning, or to identify units that can be 
grouped together, eg, patients with similar disease evolution, 
hospitals with similar structure, by drawing on unsupervised 
learning. A 2019 example used ANNs to identify individuals 
at risk of in-hospital mortality.64 The model not only allowed 
researchers to model the probability of death longitudinally, 

but also was able to document how various timestamps 
contributed to the prediction. Therefore, the researchers 
were able to provide targeted interventions, as well as forecast 
changes in the in-hospital mortality probability over time.

Discussion
We reviewed seven models that can be used in HIA modelling, 
to gain insight into the health impacts of policy proposals. 
The reviewed models have different configurations, fields of 
application, assumptions, health risk functions, complexities, 
limitations and strengths.

Before choosing a model, the researcher needs to consider 
that model input assumptions match the available parameter 
and data structures, while the model outputs must match 
the research question and need to be comprehensible and 
acceptable to the HIA end-users (eg, communities affected 
and their advocates, policy-makers, practitioners, etc, while 
available resources (ie, time, costs, computational skills), are 
overarching and decisive (Figure 2).61

The research question needs to be defined clearly, best if 
in consultation with the end-users,8 from the outset of the 
project. The inventory of existing literature and explanatory 
theory, available data and its structure, and needed team 
expertise need to be clear. Agreement on research question, 
timeliness, resources available, and expected use of the 
outputs between the model conception and design teams and 
potential end-users are important for model choice and set 
the boundaries of the work.61

Comparing the seven reviewed models in their structural 
configurations, the first difference is the modelling unit: 
while CRA, TSA, CM, and SM model outcomes on the 
population level, ABM, MS, and ML model individuals and 
their trajectories, from which eventually population-level 
patterns derive, ie, social phenomenon under study. The 
modelling unit, ie, individual vs population-level, together 
with the complexity of the models, usually determine the 
amount and variety of input data required, with CRA and 
TSA usually requiring less data, and ABM and MS the most. 
However, there is considerable variability and there can be 
very advanced CRA or simple MS. The structural complexity 
of the model also determines the requirement of resources 
and computational skills. ABM, MS, and ML typically 
demand more advanced mathematical and programming 
competencies and might require parallel computing, while 
CRA, TSA, CM, and SM are typically easier implementable. 
However, with increasing computing power and access to 
cloud computing, this distinction is less pronounced. If 
researchers decide to do multiple uncertainty simulations (eg, 
Monte Carlo) to better quantify the range of potential effect, 
these can considerably increase model run times. 

All models have the potential for prospective HIA 
application, except TSA only partially, as TSA models 
typically require post-intervention observations (unless the 
change in regression slope is known). CRA outputs should 
be interpreted as a comparison between BAU and some 
(future) alternative, as CRA are inherently non-temporal and 
cannot account for changing population structures, while 
the other models are simulation approaches and can account 
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for temporal changes and eg, aging populations. While CRA 
exclusively draw on health risk extrapolation, and therefore 
assume generalizability of risks to the population under study, 
all other models can estimate health risk functions, or draw 
on a combination of risk estimation and risk extrapolation, 
such as CM, ABM, and MS. While in TSA, CM, SM, ABM, 
and MS it is the researcher who decides on parameter 
inclusion for risk estimation, which should be robustly data-
driven and theoretically-grounded, in ML it is the algorithm 
that decides automatically on the model form and function. 
Hence, ML models are very flexible as they tend to be free 
of distributional assumptions, eg, variable’s interdependences, 
higher order interactions, linearity, that the other models 
depend on, but which are often violated in real-world 
applications. Nevertheless, ML models are prone to over-
fitting, meaning that the model fits extremely well to the 
training data it was constructed on, but might poorly forecast 
future values under changed conditions, which might limit 
ML in HIA application.63 This raises generally the question 
whether extrapolation of available health risk functions from 
one population to another (as in CRA, and possibly CM, 
ABM, and MS) are of higher or lower order of validity than 
obtaining health risk functions from a single dataset with a 
set of observations in a given population (all other models). 

A key consideration for HIA is timeliness, namely providing 
evidence of the policy impact before its implementation, to 
influence the decision-making process. Often, a narrow time 
window is available, after which outcomes are no longer 
relevant, because a decision on policy implementation has 
been made. The researcher, according to research question, 
data structures, end-users and available resources (ie, time, 
money, computational skills), needs to decide whether to 
choose a more complex or simpler model and how much 
added value a more complex model has over a simpler model 
that achieves similar results. Modelling should follow the 
principles of parsimony, which refers to preferring simpler 
models over complex ones, if the simpler model produces 

robust results. Hence, a simple, comprehensive model, eg, 
in terms of number of model parameters, distributional 
assumptions, model form, etc, is preferable over a complex 
model where the number of parameters is exhaustive and 
distributional assumptions and model form cannot be 
understood anymore. However, the robustness of very simple 
models might be difficult to assess, especially if they try to 
model a complex social phenomenon. On the other hand, 
very complex models, without proper description, could be 
considered as “black boxes” by end-users, running the risk of 
not being understood and outputs not being used (eg, in the 
policy decision-making process). Concerns may arise from the 
choice of formal tools, eg, computer language and modelling 
packages, because often softwares and algorithms are not 
standardized, open-source and are continually evolving.

During the HIA modelling, a multidisciplinary team 
of experts is desirable, including experts in theory and 
mechanisms, experts in mathematical modelling and 
computational coding that help translating the model from 
concept to code, and experts that can translate the outputs 
into policy and societal impact. Generally, there is a call 
for more participatory, quantitative approaches in HIA.8 
Participation allows planners and policy-makers to gain 
a more detailed insight into stakeholder behaviors and 
preferences and is valuable to backup assessment procedures 
of policy proposals. Moreover, participation allows an increase 
in public acceptability of decisions, build stronger consensus 
and reduce conflicts.8 

The WHO HIA definition also calls for assessing “the 
distribution of [policy] effects within the population,”2 and 
thereby emphasizes that health impacts of policies can 
vary for different subgroups, according to varying genetic, 
lifestyle, or socio-economic, etc, susceptibilities. Studying 
these differential impacts will help identify most vulnerable 
subgroups and will pinpoint where intervention is most 
urgently needed for equitable and just health outcomes. In this 
regard, individual-level models that allow for identification 
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Figure 2. Interlinkages of Key Considerations for Health Impact Assessment Model Choice. The model input assumptions must match the data structure and parameter 
properties that will be used for model input, while health impact outputs must match the research question to be answered and must be comprehensible to the end-user 
the HIA is conducted for. Available resources in terms of time, money and computational skills are overarching and decisive. The figure is adapted from Gibert et al.61 

Abbreviations: HIA, health impact assessment; CRA, comparative risk assessment; TSA, time series analysis; CM, compartmental model; SM, structural model; ABM, 
agent-based model; MS, microsimulations; AI/ML, artificial intelligence/machine learning.
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of subgroup impacts (ie, ABMs, MS, ML) are particularly 
valuable to understand which individuals/subgroups are 
disproportionally affected, which is key in defining equitable 
intervention strategies. 

Several common challenges in health impact forecasting 
have previously been identified65 and need consideration in 
the health impact modelling discussion. Challenges relate 
to (a) modelling the time course of the counterfactual, ie, 
immediate policy implementation versus phase-in and the 
resulting time-varying effects of health drivers on health 
outcomes; (b) time-lags in health benefit build-up and 
considerations of discounting future impacts; (c) uncertainty 
in addressing structural and parametric uncertainties; (d) 
general uncertainty in projecting the future, related to health 
drivers, demographic and socioeconomic trends, and health 
outcomes; and (e) how to deal with structural breaks and 
unforeseen events (eg, pandemics, world economic crisis, 
etc), leading to instability of model parameters. 

In the context of Georg Box’s reflection of all models being 
wrong, but some being useful, it is important to highlight that 
all models are limited systems and can only reflect a small 
fraction of the real-world complex systems. Models are very 
much tied to the datasets they were constructed on and might 
miss aspects that are not captured in the data but are important 
in the real-world. Therefore, having a good theoretical 
understanding of the social construct under study, including 
unobserved entities or unmeasured variables, is a prerequisite 
for model choice and model functioning (eg, structural and 
parametric robustness). Also, statistical modelling, meaning 
the fitting of the model to the underlying observational dataset 
(ie, empirical analysis), should be done complementary to the 
simulation, meaning the theoretical representation of the real 
world that goes beyond the observational data (ie, theoretical 
analysis).44 While statistical analysis is probably closer to 
the data, it is not necessarily closer to reality and empirical 
models can potentially lack firm theoretical grounding, not 
accounting for underlying system dynamics and unobserved 
but influential entities. On the other hand, theoretical models, 
are potentially speculative, untested and not fundamentally 
empirical. Therefore, statistical models need to move closer 
to theoretical models and vice versa. SM might serve as an 
example of a statistical model moving closer to a theoretical 
model. SM can unravel complex processes, temporal ordering, 
causal linkages and direct and indirect effects, despite being 
fairly statistical and empirical by only including variables that 
have been measured.44 ABMs might serve as an example of a 
theoretical model having moved closer to a statistical model, 
intermingling chance with determinism. In ABMs events 
occur either by chance, according to probability distributions 
or are governed by strong behavioral rules which are 
determinative and not subjective to chance. Nevertheless, in 
ABMs many elements remain beyond empirical observation 
and one has a theoretical model that is partly estimated 
statistically.44 

In line with Epstein’s thoughts that even the best models are 
fruitfully wrong and illuminating abstractions,66 one needs to 
recognize that models are limited systems, while they have the 
power to form the conceptual foundations of their respective 

fields and are headlights in dark unexplored territory. Models 
can surprise, make us curious, lead to new questions, allow us 
to doubt and thereby, help us to base our beliefs on evidence 
and not on authority.66

As common in HIA studies, where evidence on causal 
inferences is lacking, due to a lack of supportive data or 
theory, researchers feed in assumptions on model parameter 
characteristics that carry uncertainties. Uncertainties in 
the model may be structural (ie, associated with model 
configuration) and parametric (ie, associated with model 
parameters, eg, slope of ERFs, threshold levels, etc). 
Uncertainties need to be transparently defined and quantified 
by giving ranges of confidence on plausible values. Uncertainty 
must be effectively communicated with the model design and 
results, and expectations about accuracy in forecasting of 
policy impacts must be managed. 

A final consideration is the model validation. For the 
majority of simpler models, a face-validity of the model (first 
order validation, ie, determination by experts that the model 
reflects the understanding of the available evidence and 
science) and an internal validation (second order validation, ie, 
verification of the adequacy of the codes and algorithms used 
for the modelling process) could be considered sufficient.67 
While for some models, especially the ones with complex 
dynamics and feedbacks, a validation of third or higher order 
is recommended, which would be an external validation 
(third order validation, ie, model output are compared 
with empirical observation not considered in the model 
development), predictive validation (fourth order validation, 
ie, assessing model’s ability to predict empirical results that 
were not available during the model development) or a cross-
model validation (ie, comparison of results among different 
models for the same or sufficiently similar analyses).67 

Strengths and Limitations
To our knowledge, this is the first narrative review comparing 
different mathematical models that have been or can be used 
for health impact forecasting of public policy proposals, and 
we provide key consideration for model choice for researchers 
who wish to engage in HIA modelling. The expert consultation 
and supportive narrative literature review add robustness to 
our findings. However, this is not a systematic review of HIA 
models nor relevant literature; therefore, we acknowledge that 
partially selective reporting, also of model examples, might 
have occurred. Moreover, as stated above, we recognize that 
models are often more integrated and cannot be distinguished 
as simply as we represent them here. We intend to describe 
basic model setup and functioning and acknowledge that 
working definitions in reality are much broader, hybrid-
models exist, and distinguishing between model types as we 
do in this manuscript is often not possible. 

Conclusions
We reviewed seven different models that can be used to 
forecast the health impacts of policy proposals, and therefore 
are relevant in the field of HIA. Each of these models has 
specific characteristics, related to available parameter 
and data structures, computational implementation, and 
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comprehensibility, and the researcher should consider them 
critically before choosing a model. Model input assumptions 
need to match the available data structure, while the outputs 
of the modelling must match the research question to be 
answered and need to be comprehensible to the end-users 
the HIA is conducted for, while available resources (ie, time, 
costs, computational skills) are overarching and decisive. 
Moreover, good communication and transparency during 
the entire HIA process, from research question definition, 
model conception and implementation, to interpretation of 
modelling outputs, is needed to make HIA outcomes relevant 
to inform the policy-decision making process and generate 
impact for society.
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