Applying Abstract Text Mining as a Complement to PRISMA in Reviewing the Scope of Healthcare’s Circular Economy; Comment on “A Review of the Applicability of Current Green Practices in Healthcare Facilities”

Document Type : Commentary

Author

Industrial and Systems Engineering Department, Kennesaw State University, Marietta, GA, USA

Abstract

Efforts to reduce the healthcare sector’s carbon footprint and greenhouse gas (GHG) emissions have brought increased attention to the adoption of the circular economy (CE) in recent years. These efforts aim to lower carbon-intensive products while improving efficiency, waste reduction, and healthcare resilience. Soares et al conducted a scoping review examining CE applicability in healthcare and identified strategies to enhance its implementation. In this commentary paper, a novel abstract text mining (ATM) approach is introduced as a complement to the standard Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Using this approach, the search terms employed by Soares et al were expanded, article abstracts were extracted, and scope areas were mapped with the assistance of a well-established machine learning technique—latent Dirichlet allocation (LDA) topic modeling. Comparison of the ATM results with those reported by Soares et al revealed three additional scope areas: alternative treatment pathways, pharmaceutical footprint reduction, and the utilization of emerging technologies.

Keywords


  1. Dehipawala S, Goldman E, Hwang E, Shah P, Shroff A, O'Hara M. OP21 The pharmaceutical industry's carbon footprint and current mitigation strategies: a literature review. Value Health. 2023;26(6):S311. doi:1016/j.jval.2023.03.1695
  2. Geissdoerfer M, Savaget P, Bocken NM, Hultink EJ. The circular economy—a new sustainability paradigm? J Clean Prod. 2017;143:757-768. doi:1016/j.jclepro.2016.12.048
  3. Soares AL, Buttigieg SC, Bak B, et al. A review of the applicability of current green practices in healthcare facilities. Int J Health Policy Manag. 2023;12:6947. doi:34172/ijhpm.2023.6947
  4. Edison MA, Connor MJ, Miah S, et al. Understanding virtual urology clinics: a systematic review. BJU Int. 2020;126(5):536-546. doi:1111/bju.15125
  5. Miah S, Dunford C, Edison M, et al. A prospective clinical, cost and environmental analysis of a clinician-led virtual urology clinic. Ann R Coll Surg Engl. 2019;101(1):30-34. doi:1308/rcsann.2018.0151
  6. Connor MJ, Miah S, Edison MA, et al. Clinical, fiscal and environmental benefits of a specialist-led virtual ureteric colic clinic: a prospective study. BJU Int. 2019;124(6):1034-1039. doi:1111/bju.14847
  7. Duane B, Lee MB, White S, Stancliffe R, Steinbach I. An estimated carbon footprint of NHS primary dental care within England. How can dentistry be more environmentally sustainable? Br Dent J. 2017;223(8):589-593. doi:1038/sj.bdj.2017.839
  8. Duane B, Hyland J, Rowan JS, Archibald B. Taking a bite out of Scotland’s dental carbon emissions in the transition to a low carbon future. Public Health. 2012;126(9):770-777. doi:1016/j.puhe.2012.05.032
  9. Sehgal AR, Slutzman JE, Huml AM. Sources of variation in the carbon footprint of hemodialysis treatment. J Am Soc Nephrol. 2022;33(9):1790-1795. doi:1681/ASN.2022010086
  10. Mojdehbakhsh RP, Rose S, Peterson M, Rice L, Spencer R. A quality improvement pathway to rapidly increase telemedicine services in a gynecologic oncology clinic during the COVID-19 pandemic with patient satisfaction scores and environmental impact. Gynecol Oncol Rep. 2021;36:100708. doi:1016/j.gore.2021.100708
  11. Goel H, Wemyss TA, Harris T, et al. Improving productivity, costs and environmental impact in international eye health services: using the ‘Eyefficiency’ cataract surgical services auditing tool to assess the value of cataract surgical services. BMJ Open Ophthalmol. 2021;6(1):e000642. doi:1136/bmjophth-2020-000642
  12. Penaskovic KM, Zeng X, Burgin S, Sowa NA. Telehealth: reducing patients’ greenhouse gas emissions at one academic psychiatry department. Acad Psychiatry. 2022;46(5):569-573. doi:1007/s40596-022-01698-x
  13. Devlin-Hegedus JA, McGain F, Harris RD, Sherman JD. Action guidance for addressing pollution from inhalational anaesthetics. Anaesthesia. 2022;77(9):1023-1029. doi:1111/anae.15785
  14. Unger SR, Campion N, Bilec MM, Landis AE. Evaluating quantifiable metrics for hospital green checklists. J Clean Prod. 2016;127:134-142.
  15. Barraclough KA, Agar JW. Green nephrology. Nat Rev Nephrol. 2020;16(5):257-268. doi:1038/s41581-019-0245-1
  16. Rajan T, Amin SO, Davis K, et al. Redesigning kidney care for the anthropocene: a new framework for planetary health in nephrology. Can J Kidney Health Dis. 2022;9:20543581221116215. doi:1177/20543581221116215
  17. Soltani SA, Overcash MR, Twomey JM, Esmaeili MA, Yildirim B. Hospital patient-care and outside-the-hospital energy profiles for hemodialysis services: report of two cases. J Ind Ecol. 2015;19(3):504-513.
  18. Buchan JC, Thiel CL, Steyn A, et al. Addressing the environmental sustainability of eye health-care delivery: a scoping review. Lancet Planet Health. 2022;6(6):e524-e534. doi:1016/S2542-5196(22)00074-2
  19. Veitch AM. Greener gastroenterology and hepatology: the British Society of Gastroenterology strategy for climate change and sustainability. Frontline Gastroenterol. 2022;13(e1):e3-e6.
  20. McAlister S, Grant T, McGain F. An LCA of hospital pathology testing. Int J Life Cycle Assess. 2021;26(9):1753-1763.
  21. Sherman JD, Ryan S. Ecological responsibility in anesthesia practice. Int Anesthesiol Clin. 2010;48(3):139-151. doi:1097/AIA.0b013e3181ea7587
  22. Parvatker AG, Tunceroglu H, Sherman JD, et al. Cradle-to-gate greenhouse gas emissions for twenty anesthetic active pharmaceutical ingredients based on process scale-up and process design calculations. ACS Sustain Chem Eng. 2019;7(7):6580-6591.
  23. Varughese S, Ahmed R. Environmental and occupational considerations of anesthesia: a narrative review and update. Anesth Analg. 2021;133(4):826-835. doi:1213/ANE.0000000000005504
  24. Ishizawa Y. General anesthetic gases and the global environment. Anesth Analg. 2011;112(1):213-217. doi:1213/ANE.0b013e3181fe02c2
  25. Bravo D, Gaston RG, Melamed E. Environmentally responsible hand surgery: past, present, and future. J Hand Surg Am. 2020;45(5):444-448. doi:1016/j.jhsa.2019.10.031
  26. Yates EF, Bowder AN, Roa L, et al. Empowering surgeons, anesthesiologists, and obstetricians to incorporate environmental sustainability in the operating room. Ann Surg. 2021;273(6):1108-1114. doi:1097/SLA.0000000000004755
  27. Wu S, Cerceo E. Sustainability initiatives in the operating room. Jt Comm J Qual Patient Saf. 2021;47(10):663-672. doi:1016/j.jcjq.2021.06.010
  28. Vozzola E, Overcash M, Griffing E. An environmental analysis of reusable and disposable surgical gowns. AORN J. 2020;111(3):315-325. doi:1002/aorn.12885
  29. Sanchez SA, Eckelman MJ, Sherman JD. Environmental and economic comparison of reusable and disposable blood pressure cuffs in multiple clinical settings. Resour Conserv Recycl. 2020;155:104643.
  30. Manga VE, Forton OT, Mofor LA, Woodard R. Health care waste management in Cameroon: a case study from the Southwestern Region. Resour Conserv Recycl. 2011;57:108-116.
  31. Thiel C, Duncan P, Woods N. Attitude of US obstetricians and gynaecologists to global warming and medical waste. J Health Serv Res Policy. 2017;22(3):162-167. doi:1177/1355819617697353
  32. Hsu S, Thiel CL, Mello MJ, Slutzman JE. Dumpster diving in the emergency department: quantity and characteristics of waste at a level I trauma center. West J Emerg Med. 2020;21(5):1211-1217. doi:5811/westjem.2020.6.47900
  33. Richardson J, Grose J, Manzi S, et al. What's in a bin: a case study of dental clinical waste composition and potential greenhouse gas emission savings. Br Dent J. 2016;220(2):61-66. doi:1038/sj.bdj.2016.55
  34. Asghari M, Al-e SM. A green delivery-pickup problem for home hemodialysis machines; sharing economy in distributing scarce resources. Transp Res E Logist Transp Rev. 2020;134:101815.
  35. Chowdhury NR, Ahmed M, Mahmud P, Paul SK, Liza SA. Modeling a sustainable vaccine supply chain for a healthcare system. J Clean Prod. 2022;370:133423. doi:1016/j.jclepro.2022.133423
  36. Wu H, Tao F, Yang B. Optimization of vehicle routing for waste collection and transportation. Int J Environ Res Public Health. 2020;17(14):4963. doi:3390/ijerph17144963
  37. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32.
  38. Madzík P, Falát L. State-of-the-art on analytic hierarchy process in the last 40 years: literature review based on Latent Dirichlet Allocation topic modelling. PLoS One. 2022;17(5):e0268777. doi:1371/journal.pone.0268777
  39. Ryu K, Yoon WJ, Kim SH, et al. Current status and trends of green endoscopy. Clin Endosc. 2025;58(4):493-502. doi:5946/ce.2024.332
  40. Lojo-Lendoiro S, Abadal Villayandre JM, Lonjedo Vincent E, Morales Santos Á, Rovira À. A greener path for interventional radiology. J Med Imaging Radiat Oncol. 2025;69(5):635-644. doi:1111/1754-9485.13867
  41. Farlie F, Palmer GA, Cohen J, et al. Sustainability in the IVF laboratory: recommendations of an expert panel. Reprod Biomed Online. 2024;48(1):103600. doi:1016/j.rbmo.2023.103600
  42. Barraclough KA, Talbot B, Knight J, et al. Carbon emissions from different dialysis modalities: a life cycle assessment. Am J Kidney Dis. 2025;86(4):465-474. doi:1053/j.ajkd.2025.04.019
  43. Mac A, Fontebasso A, Lam C, et al. Opportunities to improve the environmental sustainability of breast cancer care: a scoping review. Breast. 2025;84:104593. doi:1016/j.breast.2025.104593
  44. Phull M, Begum H, John JB, et al. Potential carbon savings with day-case compared to inpatient transurethral resection of bladder tumour surgery in England: a retrospective observational study using administrative data. Eur Urol Open Sci. 2023;52:44-50. doi:1016/j.euros.2023.03.007
  45. De Simone P, Lai Q, Ducci J, Campani D, Biancofiore G. The carbon footprint and energy consumption of liver transplantation. Front Transplant. 2025;3:1441928. doi:3389/frtra.2024.1441928
  46. Van Osch K, Madou E, Belisle S, Strychowsky JE. Reducing unnecessary instruments in tonsil hemorrhage trays at a Canadian tertiary care center: a quality improvement project. J Otolaryngol Head Neck Surg. 2024;53:19160216241267719. doi:1177/19160216241267719
  47. Hammer S, Eichlseder M, Klivinyi C, et al. Effects of departmental green anaesthesia interventions on carbon dioxide equivalent emissions: a systematic review. Br J Anaesth. 2025;135(1):79-88. doi:1016/j.bja.2025.04.013
  48. Leapman MS, Thiel CL, Gordon IO, et al. Environmental impact of prostate magnetic resonance imaging and transrectal ultrasound guided prostate biopsy. Eur Urol. 2023;83(5):463-471. doi:1016/j.eururo.2022.12.008
  49. Bawa D, Ahmed A, Darden D, et al. Impact of remote cardiac monitoring on greenhouse gas emissions: global cardiovascular carbon footprint project. JACC Adv. 2023;2(3):100286. doi:1016/j.jacadv.2023.100286
  50. Mousania Z, Kayastha D, Rimmer RA, Atkinson JD. A cradle-to-grave life cycle assessment of the endoscopic sinus surgery considering materials, energy, and waste. Int Forum Allergy Rhinol. 2025;15(3):239-249. doi:1002/alr.23474
  51. Van Bree EM, Snijder LE, Ter Haak S, Atsma DE, Brakema EA. The environmental impact of telemonitoring vs. on-site cardiac follow-up: a mixed-method study. Eur Heart J Digit Health. 2025;6(3):496-507. doi:1093/ehjdh/ztaf012
  52. Lichter KE, Charbonneau K, Sabbagh A, et al. Evaluating the environmental impact of radiation therapy using life cycle assessments: a critical review. Int J Radiat Oncol Biol Phys. 2023;117(3):554-567. doi:1016/j.ijrobp.2023.04.036
  53. Bardoult P, Cadic E, Brichory O, et al. Which carbon footprint for my ICU? Benchmark, hot spots and perspectives. Ann Intensive Care. 2025;15(1):35.
  54. Koris J, Ojelade E, Begum H, Van-Hove M, Briggs TW, Gray WK. Estimated carbon savings from changing surgical trends in primary elective total hip arthroplasty in England: a retrospective observational study. Appl Health Econ Health Policy. 2025;23(1):85-92. doi:1007/s40258-024-00916-x
  55. Spil NA, van Nieuwenhuizen KE, Rowe R, et al. The carbon footprint of different modes of birth in the UK and the Netherlands: an exploratory study using life cycle assessment. BJOG. 2024;131(5):568-578. doi:1111/1471-0528.17771
  56. Sack F, Irwin A, Van Der Zalm R, Ho L, Celermajer DJ, Celermajer DS. Healthcare-related carbon footprinting—lower impact of a coronary stenting compared to a coronary surgery pathway. Front Public Health. 2024;12:1386826. doi:3389/fpubh.2024.1386826
  57. Cunha MF, Neves JC, Roseira J, Pellino G, Castelo-Branco P. Green surgery: a systematic review of the environmental impact of laparotomy, laparoscopy, and robotics. Updates Surg. 2025;77(5):1683-1692. doi:1007/s13304-025-02221-1
  58. Fitzpatrick CM, Meinrenken CJ, Eimicke WB. Comparison of climate impact, clinical outcome, and cost-efficiency of pediatric transumbilical laparoscopic assisted appendectomy vs standard 3-port laparoscopic appendectomy. J Am Coll Surg. 2023;236(6):1186-1197. doi:1097/XCS.0000000000000582
  59. Fuschi A, Pastore AL, Al Salhi Y, et al. The impact of radical prostatectomy on global climate: a prospective multicentre study comparing laparoscopic versus robotic surgery. Prostate Cancer Prostatic Dis. 2024;27(2):272-278. doi:1038/s41391-023-00672-4
  60. Nakarai H, Kwas C, Mai E, et al. What is the carbon footprint of adult spinal deformity surgery? J Clin Med. 2024;13(13):3731. doi:3390/jcm13133731
  61. Richie C. Environmental sustainability and the carbon emissions of pharmaceuticals. J Med Ethics. 2022;48(5):334-337. doi:1136/medethics-2020-106842
  62. Kaur H, Parascandalo F, Krantzberg G, et al. Journey of a pill. Can Fam Physician. 2025;71(4):263-269. doi:46747/cfp.7104263
  63. Bryant AK, Lewy JR, Bressler RD, et al. Projected environmental and public health benefits of extended-interval dosing: an analysis of pembrolizumab use in a US national health system. Lancet Oncol. 2024;25(6):802-810. doi:1016/S1470-2045(24)00200-6
  64. Bouvet L, Juif-Clément M, Bréant V, Zieleskiewicz L, Lê MQ, Cottinet PJ. Environmental impact of intravenous versus oral administration materials for acetaminophen and ketoprofen in a French university hospital: an eco-audit study using a life cycle analysis. Can J Anaesth. 2024;71(11):1457-1465. doi:1007/s12630-024-02852-9
  65. Overgaard LK, Johansen KB, Krumborg JR, Nielsen ML, Christensen MM, Pedersen SA. Pharmaceutical waste from a Danish hospital. Basic Clin Pharmacol Toxicol. 2024;135(4):499-511. doi:1111/bcpt.14072
  66. Smale EM, Ottenbros AB, van den Bemt BJ, et al. Environmental outcomes of reducing medication waste by redispensing unused oral anticancer drugs. JAMA Netw Open. 2024;7(10):e2438677. doi:1001/jamanetworkopen.2024.38677
  67. Samad K, Yousuf MS, Ullah H, Ahmed SS, Siddiqui KM, Latif A. Anesthesia and its environmental impact: approaches to minimize exposure to anesthetic gases and reduce waste. Med Gas Res. 2025;15(1):101-109. doi:4103/mgr.MEDGASRES-D-23-00059
  68. Bernat M, Cuvillon P, Brieussel T, et al. The carbon footprint of general anaesthesia in adult patients: a multicentre observational comparison of intravenous and inhalation anaesthetic strategies in 35,242 procedures. Br J Anaesth. 2025;135(2):162-167. doi:1016/j.bja.2025.04.004
  69. Patil SS, Kisiela-Czajka A, Dasari HP. From non-renewable waste to activated carbon: a smart move towards sustainable development and environmental protection in a circular economy. Waste Manag. 2025;203:114878. doi:1016/j.wasman.2025.114878
  70. Belkhir L, Elmeligi A. Carbon footprint of the global pharmaceutical industry and relative impact of its major players. J Clean Prod. 2019;214:185-194.
  71. Straub JO. Reduction in the environmental exposure of pharmaceuticals through diagnostics, personalised healthcare and other approaches. A mini review and discussion paper. Sustain Chem Pharm. 2016;3:1-7.
  72. Sittig DF, Sherman JD, Eckelman MJ, Draper A, Singh H. i-CLIMATE: a “clinical climate informatics” action framework to reduce environmental pollution from healthcare. J Am Med Inform Assoc. 2022;29(12):2153-2160. doi:1093/jamia/ocac137
  73. Hayati N, Nashrullah W, Mustar MY, Suryanegara M. Designing a management information system to support green hospital initiatives. In: Proceedings of the 2024 4th International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS); August 7-8, 2024; Yogyakarta, Indonesia. IEEE; 2024:241-246.
  74. Sadr AV, Bülow R, von Stillfried S, et al. Operational greenhouse-gas emissions of deep learning in digital pathology: a modelling study. Lancet Digit Health. 2024;6(1):e58-e69. doi:1016/S2589-7500(23)00219-4
  75. Sharma V, Jamwal A, Agrawal R, Pratap S. A review on digital transformation in healthcare waste management: applications, research trends and implications. Waste Manag Res. 2025;43(6):828-849. doi:1177/0734242X241285420
  76. Ueda D, Walston SL, Fujita S, et al. Climate change and artificial intelligence in healthcare: review and recommendations towards a sustainable future. Diagn Interv Imaging. 2024;105(11):453-459. doi:1016/j.diii.2024.06.002
  77. Kar AK, Choudhary SK, Singh VK. How can artificial intelligence impact sustainability: a systematic literature review. J Clean Prod. 2022;376:134120.
  78. Upadhyay A, Mukhuty S, Kumar V, Kazancoglu Y. Blockchain technology and the circular economy: implications for sustainability and social responsibility. J Clean Prod. 2021;293:126130.
  79. El Miri H, El Idrissi RN, Najib M, Moh AN, Bakhouya M. Towards a blockchain-based IoT platform for buildings energy management integrating electric vehicles in home healthcare context. In: Proceedings of the 2024 World Conference on Complex Systems (WCCS); November 11-14, 2024; Marrakech, Morocco. IEEE; 2024:1-6.
  80. Xames MD, Topcu TG. How can digital twins support the economic, environmental, and social sustainability of healthcare systems: a systematic review focused on the triple-bottom-line. IEEE Access. 2025;13:14032-14051.
  81. Swami M, Verma D. Sensors for e-healthcare and environmental applications: towards systems of the future. In: Proceedings of the 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC); October 18-19, 2019; Greater Noida, India. IEEE; 2019:448-453.
  82. Bruno A, Caudai C, Leone GR, Martinelli M, Moroni D, Crotti F. Medical waste sorting: a computer vision approach for assisted primary sorting. In: Proceedings of the 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW); June 4-10, 2023; Rhodes Island, Greece. IEEE; 2023:1-5.

Articles in Press, Corrected Proof
Available Online from 02 February 2026
  • Received Date: 17 August 2025
  • Revised Date: 21 January 2026
  • Accepted Date: 28 January 2026
  • First Published Date: 02 February 2026
  • Published Date: 02 February 2026