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Abstract
Efforts to reduce the healthcare sector’s carbon footprint and greenhouse gas (GHG) emissions have brought 
increased attention to the adoption of the circular economy (CE) in recent years. These efforts aim to lower carbon-
intensive products while improving efficiency, waste reduction, and healthcare resilience. Soares et al conducted a 
scoping review examining CE applicability in healthcare and identified strategies to enhance its implementation. 
In this commentary paper, a novel abstract text mining (ATM) approach is introduced as a complement to the 
standard Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Using this 
approach, the search terms employed by Soares et al were expanded, article abstracts were extracted, and scope 
areas were mapped with the assistance of a well-established machine learning technique—latent Dirichlet allocation 
(LDA) topic modeling. Comparison of the ATM results with those reported by Soares et al revealed three additional 
scope areas: alternative treatment pathways, pharmaceutical footprint reduction, and the utilization of emerging 
technologies.
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Introduction 
The healthcare sector contributes 4.4% of global greenhouse 
gas (GHG) emissions1 and, therefore, the urgent need to cut 
its carbon footprint has gained the attention of healthcare 
researchers over the past two decades. The concept of the 
circular economy (CE) offers a framework to address this 
challenge. While it is a relatively recent framework, it is 
rooted in earlier ideas such as industrial ecology, cradle-
to-cradle design, and environmental sustainability.2 In 
the context of healthcare, adopting CE principles could 
reduce reliance on carbon-intensive production of medical 
devices, pharmaceuticals, and single-use products, as well 
as support broader sustainability goals such as promoting 
waste reduction, resource and energy efficiency, and 
resilience. In 2023, Soares et al conducted a scoping review to 
examine the applicability of CE in hospitals3 and to identify 
strategies for improving its implementation in healthcare. 
In this commentary paper, the aim is to expand Soares and 
colleagues’ findings by identifying additional scope areas that 
could be used for future environmental sustainability and CE 
research topics by scholars.

Summary of the Findings Reported by Soares et al
Soares et al organized their paper very well. First, a 

background and overview of the implementation of CE in 
the European Union region were summarized, and then they 
examined the applicability of CE in the overall healthcare 
sector and within hospitals in two separate sections. In the 
overview of the healthcare sector, they referenced many 
highly cited articles from Europe, the UK, the USA, Canada, 
China, Japan, and Austria, and reviewed those studies to 
create their scoping review article. In the application of CE 
within hospitals, Soares et al suggested opportunities related 
to hospital building design, green team establishment, waste 
management, energy, water, food consumption reduction, 
transportation, telemedicine, procurement, and behavior.

Broadening Keyword Selection
The search strategy used by Soares et al in their scoping review 
was based on the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines.3 PRISMA 
is one of the most widely used methods for conducting 
systematic literature reviews, and their use of three major 
databases—MEDLINE, Scopus, and Web of Science—adds 
confidence that the initial pool of articles included relevant 
literature for the chosen keywords: (“circular economy” 
OR “carbon footprint”) AND (“hospital” OR “healthcare”). 
However, their search strategy could be improved by 
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including additional synonyms such as “greenhouse gas 
(GHG),” “clinics,” “medical facilities,” or other related terms. 
This is particularly relevant because the term “GHG” appears 
more than 40 times in their article, often used interchangeably 
with “carbon footprint.” To demonstrate the potential impact 
of widening the keyword selection, a search was conducted in 
the Scopus database using an expanded set of terms, which 
identified 377 additional articles published between 1992 and 
2022. The list of these additional articles can be generated in 
the Scopus database by using the following query. 

((TITLE-ABS-KEY(circular economy) OR TITLE-ABS-
KEY(carbon footprint) OR TITLE-ABS-KEY (greenhouse 
gas)) AND (TITLE-ABS-KEY(hospital) OR TITLE-ABS-
KEY(healthcare) OR TITLE-ABS-KEY(clinic) OR TITLE-
ABS-KEY(medical facility)) AND PUBYEAR > 1991 AND 
PUBYEAR < 2023) AND NOT ((TITLE-ABS-KEY(circular 
economy) OR TITLE-ABS-KEY(carbon footprint)) 
AND (TITLE-ABS-KEY(hospital) OR TITLE-ABS-
KEY(healthcare)) AND PUBYEAR > 1991 AND PUBYEAR 
< 2023) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO 
(DOCTYPE, “re”) OR LIMIT-TO (DOCTYPE, “cp”)) AND ( 
LIMIT-TO (LANGUAGE, “English”))

Reviewing the abstracts of the highly-cited papers among 
these 377 additional articles revealed studies on outpatient 
services that are relevant to green healthcare but were excluded 
from the study by Soares et al, as their authors did not use 
the terms hospital or healthcare in their titles, abstracts, or 
keywords. Examples include studies by Edison et al4-6 on 
urology, Duane et al7,8 on dental practice, Sehgal et al9 on 
hemodialysis, Mojdehbakhsh et al10 on gynecologic oncology 
clinics, Goel et al11 on cataract surgeries, and Penaskovic et 
al12 on telepsychiatry.

These papers also indicate the need for an expansion of 
Soares and colleagues’ scoping review of CE applications in 
healthcare. As noted by Devlin-Hegedus et al13 and Unger et al,14 
a comprehensive framework and decision-support system are 
needed to inform healthcare providers about environmentally 
friendly treatment alternatives that deliver equivalent patient-
care outcomes. Following this approach, many scholars have 

focused on specific clinical practices and quantified GHG 
emission reductions associated with alternative treatments 
in nephrology,15-17 eye care services,18 gastroenterology and 
hepatology,19 pathology,20 anesthesia,21-24 hand surgery,25 and 
initiatives in operating rooms.26-28 However, these practice-
focused studies did not explicitly use the terms carbon 
footprint or CE and, therefore, were not included in Soares 
and colleagues’ pool of reviewed articles. Additionally, the use 
of the term GHG enabled the identification of several studies 
related to medical waste management29-33 and healthcare-
related transportation,34-36 which can strengthen two of the 
topics discussed by Soares et al study.

According to the methodological reference of the Soares et 
al paper,37 the primary goal of a scoping review is to map the 
existing body of literature on a topic by clarifying key concepts 
and identifying the main sources and types of evidence 
available. The inclusion of these additional 377 papers into 
the article pool would require screening and subsequent 
full-text assessment of selected studies in order to update the 
topic mapping. As this time-consuming process falls outside 
the scope of this present commentary, this paper instead 
introduces a novel approach that leverages a well-established 
machine learning technique to cluster the literature. This 
approach is named abstract text mining (ATM), and other 
instances of its use can be found in future works by the 
corresponding author. 

Expansion of Scope Areas
To conduct a gap analysis and assess the adequacy of the 
topics mapped by Soares et al in relation to CE and green 
healthcare improvement areas, a pool of 2560 articles 
published between January 1992 and December 2025 was 
compiled. These articles were identified using the first part 
of the aforementioned Scopus search query, which included 
the all the terms (circular economy OR carbon footprint OR 
greenhouse gas) AND (hospital OR healthcare OR clinic OR 
medical facility). The temporal boundary of the query was also 
extended to 2025 to capture recently published studies, and 
Figure shows that the increasing rate of relevant publications 

Figure. Distribution of the 2560 Articles Containing Expanded Search Terms in Their Title, Abstract, or Keywords.
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has continued after 2022.
The abstracts of these papers were then used as the input 

corpus for text mining method of latent Dirichlet allocation 
(LDA) topic modeling, which is an unsupervised machine 
learning approach based on probabilistic clustering.38 The 
abstracts of the 2560 articles were preprocessed using the R tm 
text mining package to construct the document–term matrix. 
During document–term matrix construction, words were 
reduced to their root forms using the stemming algorithm 
implemented in the R SnowballC package, ensuring that 
different grammatical variants of the same word were treated 
as a single term in the text analysis. The LDA algorithm, 
implemented with 3000 iterations of Gibbs sampling using 
the R topicmodels package, was then applied to cluster the 
2560 papers into 40 topics. Finally, the R wordcloud package 
was used to generate visual representations of these 40 topics, 
which are presented in Table. Topic labels were assigned based 
on the dominant stemmed terms within each cluster, and 
topic rankings were determined according to their similarity 
to the scope areas mapped by Soares et al. Table also reports 
the percentage of the 2560 papers assigned to each topic.

The ATM topic modeling grouped papers related to waste 
management and manufacturing, reuse, and recycling of 
medical devices into Topics 1, 2, and 3, while studies on green 
procurement and healthcare supply chains were primarily 
clustered in Topic 4. Papers addressing environmental impact 
reduction associated with transportation and telemedicine 
were categorized into Topics 5 and 6, whereas studies on 
energy efficiency and renewable energy were clustered in 
Topics 7 and 8. Sustainable building design papers were 
grouped in Topic 9, food systems and water use studies in 
Topics 10 and 11, and healthcare team sustainability awareness 
was addressed in Topic 12. These scope areas are discussed in 
Soares et al study.

Impact Assessment of Alternative Treatment Pathways and 
Green Practices
The ATM topics of 13-18 clustered alternative treatment 
pathways and green practice papers39-44 and the GHG emission 
accounting,45-49 life cycle assessment,50-52 and carbon footprint 
quantification53-55 methods were used by the authors. Topic 19 
is also about the sustainability of operating room and includes 

Table. Word Clouds, Assigned Titles, and Percentage of the 2560 Articles Across Topics

Topic Title Word Cloud % Of Total Topic Title Word Cloud % Of Total

1. Hospital Waste 
Management and Recycling

4.5% 21. Anesthesia Gases and 
Clinical Emissions

3.7%

2. Biomedical Material and 
Device Manufacturing 

3.4% 22. Chemical Processes of 
Pharmaceutical

4.0%

3. Reusable vs. Single-Use 
Medical Devices

2.5% 23. Smart Healthcare 
Technologies and Efficiency

2.7%

4. Supply Chains and CE 3.2% 24. Analytical Models and 
Decision-Support Tools

1.8%

5. GHG Emissions and 
Transportation

2.0% 25. COVID-19 Environmental 
Impact

1.4%

6. Telemedicine and Patient 
Travel Reduction

4.1% 26. Cost Modeling 
Optimization

2.4%

7. Energy Consumption 
Reduction in Facilities

2.0% 27. Cost Reduction of Clinical 
Interventions 

1.6%

8. Renewable and Energy 
Systems 

4.5% 28. Public Health and 
Healthcare Systems

2.1%
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Topic Title Word Cloud % Of Total Topic Title Word Cloud % Of Total

9. Sustainable Buildings and 
Facilities

2.5% 29. Climate Change and 
Global Health

4.0%

10. Food Systems 
Environmental Impact

3.6% 30. Ecological Role of the 
Healthcare Sector

0.9%

11. Water and Resource Use in 
Healthcare

1.2% 31. Air Pollution and Health 
Impact

2.7%

12. Education, Awareness, and 
Sustainability Barriers

3.9% 32. Worldwide Healthcare 
Environmental Solutions

1.5%

13. Green Healthcare Practices 2.3% 33. Ethics, Society, and 
Scientific Publishing

1.0%

14. Patient Care and Treatment 
Pathways

3.0% 34. NHS Initiatives 1.6%

15. Accounting GHG Emission 
Estimation 

2.3% 35. Literature Reviews and 
Evidence Mapping

3.8%

16. Life Cycle Environmental 
Assessment

2.5% 36. General Environmental 
Research Trends

0.9%

17. Carbon Footprint Analysis 1.6% 37. Healthcare Sustainability 
Integration Research

3.6%

18. Comparative Impact 
Studies

0.6% 38. Healthcare Policy and 
Economic Development

2.3%

19. Surgical Operations and 
Operating Rooms

4.0% 39. Community-Based 
Healthcare Actions

1.2%

20. Drugs and Pharmaceutical 2.8% 40. Hospital Studies and 
Strategic Planning

0.5%

Abbreviations: GHG, greenhouse gas; NHS, National Healthcare Service; CE, circular economy.

Table. Continued
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papers related to environmentally sustainable surgical 
operations.56-60 Many instances of pre-2022 related papers15-28 
were discussed in the previous section.

Pharmaceutical Manufacturing, Usage, and Waste 
Based on Dehipawala et al1 study, the production, distribution, 
and use of pharmaceuticals accounts for 18% of the healthcare 
sector’s GHG emissions. Such a large contribution justifies the 
implementation of hospital programs such as drug reuse and 
take-back initiatives or the purchase of biodegradable drug 
delivery systems that reduce waste and incineration needs.61 
The papers in topics 20, 21, and 22 are clustered around the 
issue of pharmaceutical manufacturing, usage, and waste 
in the healthcare sector,62-69 which was overlooked in the 
Soares et al paper despite many highly cited papers related to 
pharmaceutical GHG emissions.61,70,71 

Leveraging Emerging Innovative Technologies
The clustered papers in Topics 23 and 24 indicate increasing 
attention in recent years to the use of emerging technologies 
for implementing CE practices in hospitals.72-75 For example, 
artificial intelligence (AI) has been identified as a tool for 
optimizing resource allocation to reduce waste and energy 
consumption.76,77 Blockchain technology can enhance 
transparency within pharmaceutical supply chains and 
building energy management.78,79 Digital twins can support the 
simulation of processes across economic, environmental, and 
social dimensions.80 In addition, smart sensor technologies 
enable real-time monitoring of energy use, air quality, and 
equipment performance, thereby supporting predictive 
maintenance and waste minimization strategies.81,82 Majority 
of these studies have been published after 2022 and represent 
an evolving scope area with significant potential to strengthen 
the integration of CE practices within the healthcare sector.

After incorporating the three additional scope areas 
described above, no distinct major category can be identified 
for Topics 25 through 40, as the papers clustered within 
these topics generally address the environmental impacts of 
COVID-19, sustainability–cost trade-offs, health impacts of 
climate change, the roles of healthcare providers and hospital 
administrators, and broader research trends related to the 
environmental impacts of healthcare.

Conclusion 
In this commentary paper, in addition to expanding the 
findings of Soares et al by identifying three additional 
healthcare CE scope areas, the application of machine learning 
and text mining approaches was examined as a complement 
to scoping reviews in knowledge domains characterized by 
large bodies of published literature. 

This study demonstrates the effectiveness of a 
complementary approach to the standard PRISMA 
methodology for conducting scoping reviews. The proposed 
ATM approach can be applied in two ways: either at the 
beginning of the “Screening” phase to establish an initial 
knowledge map prior to abstract screening for relevance, 
or after the “Inclusion” phase to validate the synthesized 
and identified scope areas. This paper examined the latter 

approach and expanded the scope areas identified through 
a standard PRISMA-based study. One potential direction 
for future research is to replicate this method across other 
published PRISMA scoping reviews to further demonstrate 
its effectiveness.
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