Article title: The Projection of Iran's Healthcare Expenditures By 2030: Evidence of a Time-Series Analysis

Journal name: International Journal of Health Policy and Management (IJHPM)

Authors' information: Nader Jahanmehr¹, Mohammad Noferesti², Soheila Damiri³*, Zhaleh Abdi⁴, Reza Goudarzi⁵

¹Health Economics, Management and Policy Department, Virtual School of Medical Education & Management, Shahid Beheshti University of Medical Sciences. Tehran. Iran.

²Department of Economics, School of Economics and Political Sciences, Shahid Beheshti University, Tehran, Iran.

³Department of Health Management & Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

⁴National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran.

⁵Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.

(*Corresponding author: <u>damiri.soheila@gmail.com</u>)

Supplementary file 4. Validity Assessment

Validity assessment

In this study, the credit assessment process is performed in two stages:

- 1. Evaluating the validity of the initial equations
- 2. Evaluating the validity of the final dynamic macro-structural dynamic econometric model

1. Evaluating the validity of the initial equations

Several equations were specified to estimate each of the dependent variables that had to be included in the dynamic macro-structural econometric model, but these equations had to address some regression. Each equation was repeated several times to finally we achieve a specification for each dependent variable equation that would both address these assumptions and simultaneously represent an appropriate simulation in the final macro-structural model. In this step four tests of Jarque–Bera, Breusch–Godfrey, White and Ramsey tests were utilized to check the normality of error terms distribution, lack of serial correlation between error terms and other

variables, homoscedasticity of error term and accuracy of functional form specification, respectively. The results of these tests are presented in the following tables.

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	0.625	0.731	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	2.979	0.06	null hypothesis is not rejected
White test	homoskedasticity	1.935	0.093	null hypothesis is not rejected
Ramsey test	appropriate specification	0.767	0.446	null hypothesis is not rejected

Table S24: Results of evaluation of classical regression assumptions for GDP regression model

Table COS. Desalts	of another of	· _1	a a a a a a a fa a T	atal labora fanas na anasian mandal
Table 525: Results	of evaluation of	classical regression	assumptions for 1	otal labour force regression model
			I I I I I I I I I I I I I I I I I I I	

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	2.489	0.287	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.498	0.61	null hypothesis is not rejected
White test	homoskedasticity	2.317	0.069	null hypothesis is not rejected
Ramsey test	appropriate specification	0.427	0.67	null hypothesis is not rejected

Table S26: Results of evaluation of classical regression assumptions for Active population regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	55.03	0.00	null hypothesis is rejected
breusch-godfrey test	there is no serial correlation	0.549	0.581	null hypothesis is not rejected
White test	homoskedasticity	3.109	0.242	null hypothesis is not rejected
Ramsey test	appropriate specification	0.284	0.777	null hypothesis is not rejected

Table S27: Results of evaluation of classical regression assumptions for Total investment regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	2.36	0.307	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.473	0.625	null hypothesis is not rejected
White test	homoskedasticity	0.726	0.581	null hypothesis is not rejected
Ramsey test	appropriate specification	0.691	0.492	null hypothesis is not rejected

Table S28: Results of evaluation of classical regression assumptions for Tax Revenue regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	1.623	0.444	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	2.379	0.103	null hypothesis is not rejected
White test	homoskedasticity	2.02	0.106	null hypothesis is not rejected
Ramsey test	appropriate specification	0.202	0.840	null hypothesis is not rejected

 Table S29: Results of evaluation of classical regression assumptions for Government Current Payments regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	0.609	0.737	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.49	0.615	null hypothesis is not rejected
White test	homoskedasticity	0.547	0.701	null hypothesis is not rejected
Ramsey test	appropriate specification	0.508	0.613	null hypothesis is not rejected

 Table S30: Results of evaluation of classical regression assumptions for Total government expenditure regression model

Test type Null hypothesis Statistics P-value Result

jarque-bera test	normal distribution of error terms	1.138	0.565	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.093	0.91	null hypothesis is not rejected
White test	homoskedasticity	1.532	0.182	null hypothesis is not rejected
Ramsey test	appropriate specification	0.585	0.56	null hypothesis is not rejected

Table S31: Results of evaluation of classical	l regression assumptions for	Government Revenue regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	1.06	0.588	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.947	0.396	null hypothesis is not rejected
White test	homoskedasticity	0.455	0.86	null hypothesis is not rejected
Ramsey test	appropriate specification	1.592	0.119	null hypothesis is not rejected

Table S32: Results of evaluation of classical regression assumptions for GDP deflator regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	1.855	0.395	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.316	0.730	null hypothesis is not rejected
White test	homoskedasticity	0.642	0.718	null hypothesis is not rejected
Ramsey test	appropriate specification	1.854	0.069	null hypothesis is not rejected

Table S33: Results of evaluation of classical regression assumptions for Healthcare Consumer Price Index
regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	4.197	0.122	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.438	0.04	رد Null hypothesis

White test	homoskedasticity	1.057	0.394	null hypothesis is not rejected
Ramsey test	appropriate specification	1.064	0.292	null hypothesis is not rejected

Table S34: Results of evaluation of classical regression assumptions for Liquidity regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	0.463	0.793	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	1.86	0.166	null hypothesis is not rejected
White test	homoskedasticity	0.831	0.551	null hypothesis is not rejected
Ramsey test	appropriate specification	1.138	0.26	null hypothesis is not rejected

 Table S35: Results of evaluation of classical regression assumptions for Out of Pocket Health Expenditure regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque–bera test	normal distribution of error terms	0.321	0.851	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	2.138	0.168	null hypothesis is not rejected
White test	homoskedasticity	0.884	0.582	null hypothesis is not rejected
Ramsey test	appropriate specification	0.776	0.453	null hypothesis is not rejected

Table S36: 1	Results of evaluation of classical regression assumptions for Public Health Insurance Coverage
	regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	1.509	0.47	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	2.057	0.158	null hypothesis is not rejected
White test	homoskedasticity	1.875	0.137	null hypothesis is not rejected

Ramsey test	appropriate	0.844	0.409	null hypothesis
Ramsey test	specification	0.044	0.405	is not rejected

Table S37: Results of evaluation of classical regression assumptions for Prepaid Private Health Expenditure
regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	6.518	0.083	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.533	0.597	null hypothesis is not rejected
White test	homoskedasticity	1.105	0.403	null hypothesis is not rejected
Ramsey test	appropriate specification	0.48	0.637	null hypothesis is not rejected

Table S38: Result	s of evaluation of classical re	egression assumptions	for Commercial Hea	Ith Insuran Revenue
	r	regression model		

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	1.278	0.527	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	1.184	0.337	null hypothesis is not rejected
White test	homoskedasticity	0.829	0.613	null hypothesis is not rejected
Ramsey test	appropriate specification	4.137	0.014	Null hypothesis rejected

 Table S39: Results of evaluation of classical regression assumptions for Government Health Expenditure regression model

Test type	Null hypoth	esis Statistics	P-value	Result
jarque-bera to	est normal distribu error tern	4.022	0.133	null hypothesis is not rejected
breusch-godfrey	there is no s correlatio	0.295	0.746	null hypothesis is not rejected
White test	homoskedas	ticity 0.389	0.932	null hypothesis is not rejected
Ramsey tes	appropria specificati	0.231	0.818	null hypothesis is not rejected

Test type	Null hypothesis	Statistics	P-value	Result
jarque–bera test	normal distribution of error terms	1.239	0.538	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	2.263	0.119	null hypothesis is not rejected
White test	homoskedasticity	1.068	0.41	null hypothesis is not rejected
Ramsey test	appropriate specification	0.211	0.834	null hypothesis is not rejected

 Table S40: Results of evaluation of classical regression assumptions for Social Security Organization Health

 Expenditure regression model

 Table S41: Results of evaluation of classical regression assumptions for Social Security Organization Insurance

 Coverage regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	2.527	0.282	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	1.079	0.350	null hypothesis is not rejected
White test	homoskedasticity	2.305	0.045	null hypothesis is not rejected
Ramsey test	appropriate specification	1.088	0.283	null hypothesis is not rejected

 S42 Results of evaluation of classical regression assumptions for Social Security Organization Revenue regression model

Test type	Null hypothesis	Statistics	P-value	Result
jarque-bera test	normal distribution of error terms	4.425	0.109	null hypothesis is not rejected
breusch-godfrey test	there is no serial correlation	0.802	0.455	null hypothesis is not rejected
White test	homoskedasticity	2.207	0.011	null hypothesis is not rejected
Ramsey test	appropriate specification	0.659	0.513	null hypothesis is not rejected

Table S43: The structural macro-econometrics model designed to project Iran's HCE

 $(OHEXJ^{I}_{t}/HCPI^{2}_{t}) = \alpha + \beta_{1}(GDP^{3}_{t} - \frac{TAXJ^{4}t}{P^{5}t}) + \beta_{2}ICOV^{6}_{t} + \beta_{3}PUBHEXJ^{7}t/HCPI_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{2}ICOV^{6}_{t} + \beta_{3}PUBHEXJ^{7}t/HCPI_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{2}ICOV^{6}_{t} + \beta_{3}PUBHEXJ^{7}t/HCPI_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{2}ICOV^{6}_{t} + \beta_{3}PUBHEXJ^{7}t/HCPI_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{4}ICOV^{6}_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{4}ICOV^{6}_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{4}ICOV^{6}_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{4}ICOV^{6}_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{4}ICOV^{6}_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{4}ICOV^{6}_{t} + \beta_{4}POP60R^{8}_{t} + HCPI_{0}^{9}t + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{6}ICOV^{6}_{t} + \beta_{6}(OHEXJ_{t} - \frac{1}{P^{5}t}) + \beta_{6}ICOV^{$

 $ICOV_t = \alpha + \beta_1 GDP_t + \beta_3 POPT^{10} + ICOV_{t-1}$

 $(PPHEXJ^{11}_{t}/HCPI_{t}) = \alpha + \beta_{1}GDP_{t} + \beta_{2}POPT_{t} + \beta_{3}(PIRJ^{12}_{t}/P_{t}) + \beta_{4}(PPHEXJ_{t-1}/HCPI_{t-1})$

 $(PIRJ_t/P_t) = \alpha + \beta_1 GDP_t + \beta_2 (PIRJ_{t-1}/P_{t-1})$

(PHEXJ¹³t/HCPIt) = (OHEXJt/HCPIt) + (PPHEXJt/HCPIt)

 $(SHIJ^{14}_{t}/HCPI_{t}) = \alpha + B_1POP60R_t + \beta_2SICOV^{15}_{t} + \beta_3(SIRJ^{16}_{t}/P_t) + \beta_4(SHIJ_{t-1}/HCPIt-1)$

 $(SIRJ_t/P_t) = \alpha + \beta_1 GDP_t + \beta_2 L^{17}_t + \beta_3 (XORJ^{18}_t/P_t) + \beta_5 (SIRJ_{t-1}/P_{t-1})$

 $SICOV_t = \alpha + \beta_1 GDP_t + \beta_2 L_t + \beta_3 POPT + SICOV_{t-1}$

 $(GHEXJ^{19}_{t}/HCPI_{t}) = \alpha + B_{1}POP60R^{20}_{t} + \beta_{2}POP15R_{t} + \beta_{3}(GRJ^{21}_{t}/P_{t}) + \beta_{4}URR^{22}_{t} + \beta_{5}(GHEXJ_{t-1}/HCPI_{t-1}) + \beta_{5}(GHEXJ_{t-1}/HCPI_{t-1}/HCPI_{t-1}) +$

 $(PUBHEXJ_t/HCPI_t) = (GHEXJ_t/HCPI_t) + (SHIJ_t/HCPI_t)$

 $(THEXJ^{23}_{t}/HCPI_{t}) = (PUBHEXJ_{t}/HCPI_{t}) + (PHEXJ_{t}/HCPI_{t} + (FHEXJ^{24}_{t}/HCPI_{t})$

 $GDP_t = \alpha + \beta_1 L_t + \beta_2 K^{25}_t + \beta_3 GDP_{t-1}$

 $L_t = = \alpha + \beta_1 (W^{26}_t / CPI^{27}_t) + \beta_2 F^{28}_t + \beta_3 L_{t-1}$

 $F_t = = \alpha + \beta_1 POP2060^{29}{}_t + \beta_2 F_{t\text{-}1}$

 $CPI_t = = \alpha + \beta_1 P_t + \beta_2 CPI_{t-1}$

 $W_t = = \alpha + \beta_1 W_{t-1}$

 $k = 0.955 * k(-1) - 0.378527 * wd^{30} - 0.153215 * erd^{31} + i^{32}$

 $I_t = = \alpha + \beta_1(GDP_t) + \beta_2 R^{33}_t + \beta_3 I_{t-1}$

 $(TAXJ_t/P_t) = \alpha + \beta_1 GDP + \beta_2 (TAXJ_{t-1}/P_{t-1})$

 $(GRJ_t/P_t) = \alpha + B_1(TAXJ_t/P_t) + B_2(XORJ_t/P_t) + B_3(GRJ_{t-1}/P_{t-1})$

 $(GEJ^{34}_{t}/P_{t}) = \alpha + B_{1}(TAXJ_{t}/P_{t}) + B_{2}(XORJ_{t}/P_{t}) + B_{3}(GEJ_{t-1}/P_{t-1})$

 $P_t = \alpha + \beta_1 M_2 J^{35}_t + \beta_2 GDP_t + \beta_3 P_{t-1}$

 $HCPI_t = \alpha + \beta_1 M_2 J_t + \beta_2 GDP_t + \beta_3 HCPI_{t-1}$

 $M_2J_t = \alpha + \beta_1 XOG^{36}_t + \beta_2 GEJ_t + \beta_3 M_2J_{t-1}$

¹ Out of Pocket Health Expenditure in current price

² Healthcare Consumer Price Index

³ Gross Domestic Product in real price

⁴ Government Tax Revenue in current price

⁵ GDP deflator

⁶ Public Health Insurance Coverage

⁷ Public Health Expenditure in current price

¹⁹ Government Health Expenditure in current price

 20 Share of population < 15 years

²¹ Government Revenue in current price

²² Urbanization rate

²³ Total Health Expenditure in current price

²⁴ Foreign Health Expenditure in current price

²⁵ Capital accumulation of all sectors of the economy

⁸ Share of population > 60 years ²⁶ Real wage index ⁹ Inflation rate ²⁷ Consumer Price Index ¹⁰ Total Population ²⁸ Active population ¹¹ Prepaid Private Health Expenditure in current price ²⁹ 20 years <Share of population< 60 years ¹² Commercial Health Insuran Revenue ³⁰ Destruction of capital caused by the imposed war ¹³ Private Health Expenditure in current price ³¹ Destruction of capital caused by Rudbar earthquake ¹⁴ Social Security Organization Health Expenditure ³² Total investment in current price ³³ Interest rates on long-term deposits ¹⁵ Social Security Organization Insurance Coverage ³⁴ Government Current Payments in current price ¹⁶ Social Security Organization Revenue ³⁵ Liquidity in current price ¹⁷ Total labour force ³⁶ Oil and Gas Exports(mollion \$) ¹⁸ Oil and Gas revenue

2. Evaluating the validity of the final dynamic macro-structural dynamic econometric model

RMSE and Tile indices along with dynamic simulation are used in order to assess final sytem validity. Dynamic simulation on the one hand provides a criterion for assessing the sytems validity and on the other hand, could be used to assess the consequences and results of different policies implementations. Dynamic simulation is a very difficult test for assessing the validity of macrostructural econometric sytems. In this type of simulation, the data related to the pattern endogenous variables are initially inserted in the sytem and the sytem generates the sytem variables (simulated trend of variables), without knowing the real variables values. Subsequently, the values generated by the dynamic model could be compared with the real values, through drawing a diagram. The similarity rate of these two diagrams is one of the assessment criteria in validity test of the dynamic system. Very few dynamic systems could pass this difficult test successfully. Graphic drawings of this comparison are provided for some of the main variables in the results of the article(Figure 1).

In addition to graphical drawing, quantitative criteria such as U Tile inequality index and RMSE index have been used to evaluate the validity of the model in simulating each of the dependent variables(Table).

Dependent variables	U tile index	RMSE
GDP	0.05	5.57
Total labour force	0.02	2.32
Active population	0.02	2.32
Consumer Price Index	0.20	31.44
Total investment	0.09	15.27
Capital accumulation of all sectors of the economy	0.03	4.07
Government Tax Revenue	0.15	26.48
Government Current Payments	0.167	2.23
Total government expenditure	0.22	29.45
Government Revenue	0.18	21.95
GDP deflator	0.24	24.35
Healthcare Consumer Price Index	0.11	27.96
Liquidity	0.09	9.50
Out of Pocket Health Expenditure	0.10	1.83
Public Health Insurance Coverage	0.05	5.55
Prepaid Private Health Expenditure	0.13	37.53

Table S44: RMSE and U Tile indeces of dependent variables in developed structural macro-econometrics model

Commercial Health Insuran Revenue	0.19	30.96
Private Health Expenditure	0.10	12.06
Government Health Expenditure	0.08	14.53
Social Security Organization Health Expenditure	0.06	7.72
Social Security Organization Insurance Coverage	0.06	5.93
Social Security Organization Revenue	0.09	9.09
Public Health Expenditure	0.07	11.51
Total Health Expenditure	0.07	9.57
Total Health Expenditure as % of GDP	0.04	4.98
Public Health Expenditure as % of Total Health Expenditure	0.05	5.69
Private Health Expenditure as % of Total Health Expenditure	0.07	7.55
Out of Pocket Health Expenditure as % of Total Health Expenditure	0.06	5.98
Government Health Expenditure as % of Total Health Expenditure	0.09	9.29