A Systematic Review of Lean Implementation in Hospitals: Impact on Efficiency, Quality, Cost, and Satisfaction

Jingjing Wang, Hui Lv, Mingxin Chen, Chenyang Liu, Wenjie Ren, Hui Jiang, Lizhang Zhang

DOI: https://doi.org/10.34172/ijhpm.8974

Article History:

Received Date: January 4, 2025 Accepted Date: August 2, 2025

epublished Author Accepted Version: August 3, 2025

Copyright: © 2025 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Please cite this article as: Wang J, Lv H, Chen M, Liu C, Ren W, Jiang H, Zhang L. A systematic review of lean implementation in hospitals: impact on efficiency, quality, cost, and satisfaction. *Int J Health Policy Manag.* 2025; x(x):x–x. doi: 10.34172/ijhpm.8974

This PDF file is an Author Accepted Manuscript (AAM) version, which has not been typeset or copyedited, but has been peer reviewed. IJHPM publishes the AAM version of all accepted manuscripts upon acceptance to reach fast visibility. During the proofing process, errors may be discovered (by the author/s or editorial office) that could affect the content, and we will correct those in the final proof.

INTERNATIONAL JOURNAL OF HEALTH POLICY AND MANAGEMENT (IJHPM) ONLINE ISSN: 2322-5939
JOURNAL HOMEPAGE: HTTPS://WWW.IJHPM.COM

1

Manuscript Type: Systematic Review

A Systematic Review of Lean Implementation in Hospitals: Impact on Efficiency, Quality, Cost, and Satisfaction

Jingjing Wang¹, Hui Lv², Mingxin Chen³, Chenyang Liu³, Wenjie Ren^{*4}, Hui Jiang⁴, Lizhang Zhang⁴

- 1. Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
- 2. The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- 3. School of Public Health, Xinxiang Medical University, Xinxiang, China
- 4. Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China

Correspondence to: Wenjie Ren; rwj1571373@126.com

Abstract

Background: Lean healthcare practices are widely used to enhance efficiency, quality, cost-effectiveness, and satisfaction in hospitals. However, no studies have synthesized their effectiveness across these dimensions. This review aims to address this gap by evaluating the impact of Lean implementation on four key themes: efficiency, quality, cost, and satisfaction.

Methods: Four online databases were selected for the targeted articles: Scopus, Medline, PubMed, and Web of Science. Additionally, a comprehensive search was conducted using the Google Search Engine, along with a review of the citation list from the retrieved articles, to identify related grey literature and acquire additional articles. The search covered only the period from January 2019 to October 2024. The quality and research methodology of the articles reviewed were evaluated to determine the reliability of these findings.

Results: A total of 6,021 articles were screened, and 60 were included in this study. Our findings were grouped into four themes: (1) Efficiency: 49 studies identified 12 sub-dimensions of efficiency, with the most common variables being waiting time, length of stay (LOS), and patient volumes. (2) Quality: 12 studies reported quality improvements, covering 12 variables, with 30-day readmission rates, counselling sessions, and drug-related indicators being most prominent. (3) Cost: 17 studies examined Lean-driven cost reductions, with operating costs being the most frequently addressed variable, appearing in seven studies. (4) Satisfaction: Key satisfaction indicators included patient satisfaction, HCAHPS scores, complaint rates, and nurse satisfaction.

Conclusion: This is the first review to synthesize the literature on the impacts of Lean implementation across four key themes, while also identifying existing gaps. It highlights the positive outcomes of Lean in hospitals and outlines the primary areas of improvement emphasized by healthcare institutions within each theme.

Keywords: Lean Implementation; Lean Application; Efficiency; Quality; Cost; Satisfaction

2

Background

The intensified competitiveness within the healthcare industry has compelled hospitals to prioritize continuous improvements in quality and efficiency as key development goals^{1 2}, driving them to adopt management models focused on lean practices. These models are seen as crucial for ensuring long-term sustainability in the face of future market challenges. As advocated by researchers³⁻⁵, effective hospital management necessitates the adoption of systematic concepts and methodologies aimed at facilitating comprehensive reforms, enabling hospitals to achieve substantive progress. However, identifying comprehensive systems theories and evidence-based approaches can be challenging in practical settings, while the introduction of Lean within the medical industry has been effectively addressing this issue. Lean is a well-established, evidence-based methodology that has demonstrated its potential to assist hospital managers in enhancing hospital management and achieving favorable outcomes³. Since its introduction to the healthcare sector, the practice of lean principles, thinking, and tools has provided hospitals with notable benefits ⁴⁻⁶.

Lean management, originally developed by Toyota in Japan during the 1950s, has since evolved in the business and manufacturing sectors and was later adapted and introduced into the healthcare industry⁷. As early as 1995, Joan Wellman, a real pioneer in the field of lean healthcare, took the initiative to collaborate with a hospital in Seattle on Lean work8. In 2001, the efforts to integrate Lean in healthcare were initiated in the UK9. In 2002, the Virginia Mason Medical Center in the United States initiated the introduction and implementation of Lean management¹⁰. In recent years, it has been widely adopted and implemented in hospitals across other various countries, such as China⁴, Italy⁵, Spain¹¹, Brazil¹², Japan¹³, Netherlands¹⁴. Lean management has gained popularity in healthcare due to its focus on eliminating waste, optimizing processes, and enhancing value^{2 4 9}. As Bicheno mentioned, by emphasizing the minimization of process inefficiencies and the maximization of value added, organizations can enhance their performance regarding cost, quality, and time¹⁴. In the context of healthcare, the principle of 'respect for people' remains a paramount success factor in the effective implementation of Lean methodologies⁶. This principle, serves as the foundation for continuous improvement, involves investing in employees, in training, job security, and their morale¹⁵.

Various researchers have examined the positive effects of lean implementation in healthcare settings from multiple perspectives^{5 9 12}. Efficiency improvement, particularly in terms of reducing time and optimizing processes, is the most frequently addressed topic in the

application of Lean in hospitals and is also the most extensively studied by scholars. AlHarthy et al reported a significant reduction in the proportion of patients discharged without scheduled follow-up appointments following the implementation of lean practices in oncology settings¹⁶. Pellini et al suggested that lean management practices could improve both preoperative and postoperative processes amid the ongoing pandemic, thereby optimizing the utilization of limited resources and enhancing efficiency through better time management¹⁷. Muharam and Firman found that the adoption of lean principles in IVF Treatment led to a shortening of total patient wait time and an increase in the value-added ratio (VAR)¹⁸.

Quality, cost and satisfaction are also key focal points for scholars studying Lean implementation in healthcare. Ayaad et al discovered that the application of lean management significantly enhanced service quality, cost control, and efficient time management in oncology settings¹⁹. Similarly, Kurnia et al observed improvements in customer satisfaction, evidenced by a 44.5% reduction in the number of complaints, alongside a 34.2% decrease in the lead time for medical device procurement²⁰. An integrated review of Lean healthcare in 2023 highlighted the potential of Lean methods to significantly decrease the length of hospital stays for patients and the reductions in hospitalization-related costs²¹. Tillmann et al enhanced their organization's core competitiveness by applying lean management to develop their supply chain management system²². This approach improved the integration of supply chain functions, which, in turn, led to enhanced performance. Since the implementation of lean management in American hospitals began earlier, there has been a greater body of systemlevel research on its effectiveness in healthcare settings. For instance, Rundall et al conducted a nationwide survey of 1,152 U.S. hospitals to explore the relationship between lean management and hospital performance²³. Similarly, Po et al examined the relationship between lean management and hospital performance by surveying 288 U.S. public hospitals, indicating that lean management was linked to the EBITDA and the percentage of patients leaving the ED without being seen²⁴. Overall, while most existing research on lean management has focused on individual lean projects or departments, studies examining comprehensive lean management systems are relatively limited, with much of the research concentrated in developed countries such as the United States.

While many studies have highlighted the positive outcomes associated with lean implementation in healthcare, not all findings have been uniformly successful²⁵ ²⁶. One example is a study conducted in Sweden, which found that care centers adopting lean did not demonstrate a statistically significant improvement in patient satisfaction throughout the

period²⁷. Kunnen et al identified several barriers to sustaining lean management in healthcare and classified them into key factors, including the overburdening of employees with additional responsibilities, insufficient staff involvement, patient engagement, resources for engagement, leadership commitment, and adequate follow-up on projects²⁸. These mixed results underscore the need for further investigation into the factors influencing the success of lean management in healthcare contexts.

Previous reviews have primarily focused on identifying which Lean tools have been applied in healthcare^{21 26 29}, determining the types of waste that should be prioritized for elimination in hospitals, or summarizing the structural frameworks of Lean. Lean implementation is often characterized by a time-bound cycle and, in many hospitals, is applied through specific projects rather than across the entire organization. As a result, existing research frequently struggles to capture the long-term, overarching effects of Lean. Even when the benefits of Lean are acknowledged, few studies explore these four dimensions—quality, efficiency, cost, and satisfaction—holistically to identify actionable implementation strategies. This gap underscores the need for further research that adopts a broader and more cohesive approach to Lean implementation. To the best of our knowledge, this article is the first to provide a comprehensive interpretation of the effects of Lean implementation in hospitals from an integrated perspective. This approach offers a more nuanced understanding of how Lean can drive hospital development across multiple dimensions. The primary objective of this review is to systematically assess the impact of Lean implementation in hospitals across these four key dimensions: quality, efficiency, cost, and satisfaction. By doing so, the review aims to provide practical recommendations for practitioners involved in hospital management. Consequently, the main research question for this review is as follows: How has the application of Lean in hospitals contributed to improvements in efficiency, quality, cost, and satisfaction?

Methods

The Conceptual Framework for Lean Implementation Effectiveness in Hospitals

To clarify and define the entire research framework more explicitly, we construct a conceptual framework diagram for presentation(Figure 1.). Specifically, the challenges currently faced by hospitals were identified, highlighting the need for a new, systematic, scientific, and verifiable management system and approach to address these difficulties and support hospital development. This approach should be applied and tailored to the specific context of each hospital, thereby guiding them toward an internally driven, high-guality, and innovative

development path. Following this, the value of introducing Lean methodologies into hospitals was shown. Both the management and methods have been shown to effectively contribute to improvements within hospital. Subsequently, diversifying methods were utilized to identify and select relevant articles. Then, data extraction was performed from the articles that met the established criteria, and the practical outcomes of Lean application in hospitals were visualized across four key dimensions: efficiency, quality, cost, and satisfaction. Additionally, we intend to explore the development of a long-term evaluation system to assess the effectiveness of Lean Hospital implementation in future research. This system will serve to enhance the sustainability and stability of Lean practices within hospitals, facilitate the integration of Lean into hospital culture, and assist the long-term development of healthcare institutions.

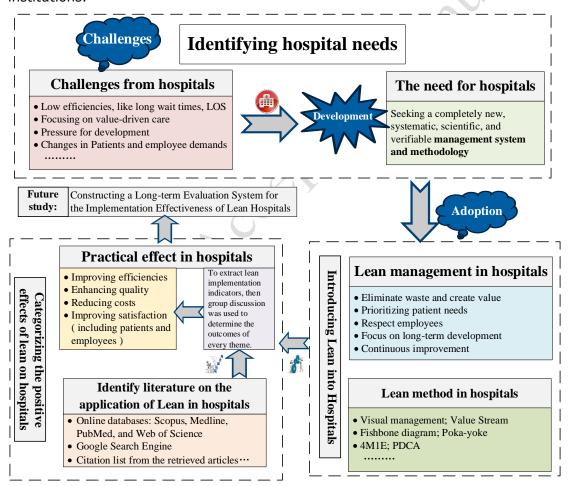
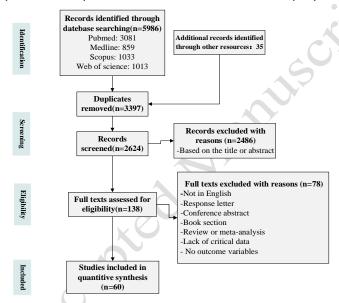



Figure 1. The Conceptual Framework for Lean Implementation Effectiveness in Hospitals

Literature screening process

The methodology employed for the literature screening in this review was a systematic literature review (SLR)^{30 31}. The literature screening process strictly followed the guidelines established by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)³². The whole selection process was illustrated in Figure 2., and the PRISMA checklist encompassed all relevant information, as detailed in Supplementary File 1. The subsequent subsections provided a comprehensive presentation of the method employed.

Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart.

Data Source and Search Strategy

Four online databases were selected for the targeted articles: Scopus, Medline, PubMed, and Web of Science. Additionally, a comprehensive search was conducted using the Google Search Engine, along with a review of the citation lists from the retrieved articles, to identify related grey literature and acquire additional articles. The search covered only the period from January 2019 to October 2024. Concurrently, a preliminary search was undertaken to develop an effective search procedure in line with the Peer Review of Electronic Search Strategies (PRESS) guidelines. The terms of search were identified by the following keywords: "Lean management" "Lean principles" "Lean thinking" "Lean approach" "Hospital" "Healthcare sector" "Quality" "Efficiency" "Benefits" "Satisfaction". The specific search strategy employed was detailed in the Supplementary File 2.

Participants

Studies of healthcare units included general hospitals, specialized hospitals, clinics, teaching hospitals or health centers, and all these hospitals had conducted projects for acquiring improvement on some aspects. This study established specific inclusion and exclusion criteria to facilitate the selection of appropriate articles. Specifically, the following inclusion criteria were applied in this study: (1) Peer review articles; (2) The application of lean within healthcare settings; (3) Having comparative outcomes of lean practice. The following exclusion criteria were delineated in this study: (1) Not in English; (2) Response letter; (3) Conference abstract; (4) Book section; (5) Review or meta-analysis; (6) Lack of critical data; (7) No outcome variables.

Data Extraction, Analysis and Synthesis

We implemented rigorous screening procedures to identify eligible articles for inclusion in this review. Initially, two independent reviewers (W.J and L. H) assessed each study based on its title and abstract. Subsequently, the reviewers checked the entire texts of the relevant articles according to the established inclusion and exclusion criteria. In cases where the reviewers could not come to an agreement, a third reviewer (C.M) was brought in to facilitate discussion and resolve any disagreements. All reviewers participating in this study have rich experience and knowledge in lean healthcare, and some of them have published some studies related lean healthcare.

We developed a standardized data extraction table through group discussions, which included key information such as the title, first author(s) names, publication year, country, journal, study design, statistical tests, and outcome variables. Two data extractors(W.J and L. H) were then designated to extract the data, and once the extraction was completed, the consistency of the extracted data was checked by comparing the results. Any discrepancies were resolved through discussion, with a third team member (J.H) joining if necessary to reach consensus. Subsequently, we classified the information into four dimensions based on the extracted data: efficiency, quality, cost, and satisfaction, through further group discussions based on the sampled articles. Finally, additional discussions were conducted to determine how to consolidate and synthesize the data within each dimension, and the results were presented in a table format. Considering the heterogeneity of researches in terms of their study designs, and outcomes, we were unable to pool the results and conduct a meta-analysis. As a result,

JOURNAL HOMEPAGE: HTTPS://WWW.IJHPM.COM

we decided to conduct a descriptive synthesis of the outcomes to summarize findings in these

articles included, as in similar surverys²⁶.

Risk of Bias

We utilized the quality assessment tool developed by Hawker et al^{33} for assessing the quality

of these targeted articles. The tool comprises nine key attributes: abstract and title;

introduction and aims; method and data; sampling; data analysis; ethics and bias;

findings/results; transferability/generalizability; and, implications and usefulness³³. Each

attribute is rated on a four-point scale: good (4 points), fair (3 points), poor (2 points), and

very poor (1 point). The final quality rating of each article is determined by summing the

scores for all attributes. The quality ratings for the included articles in this review followed

the classification proposed by Braithwaite et al³⁴ which categorizes articles into three quality

levels based on the total score: high (30-36 points), medium (23-29 points), and low (9-22

points). Two independent reviewers assessed the included articles for ensuring the scientific

rigor and validity of the evaluation. In cases of disagreement regarding the quality rating of

an article, a third reviewer was consulted to facilitate discussion and reach a consensus. The

outcomes of assessment were depicted in the Supplementary File 3. A narrative synthesis of

the findings was shown in the part of results.

Ethical Issues/Statement

This study does not involve human participants, human data, or any animal studies, and

therefore, ethical approval was not required.

Results

Initially, a total of 6021 articles were identified through four online databases, as well as

Google searches and references from related literature. Subsequently, 3,397 articles were

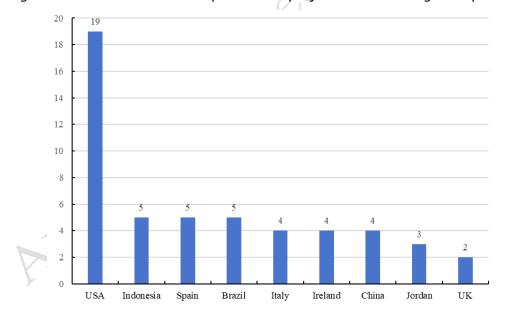
excluded due to duplication. After that, 2,486 articles were removed based on the title and

abstract in the screening stage. A full-text review was then conducted for 138 articles,

resulting in the exclusion of 78 articles for reasons detailed in Figure 1. Ultimately, 60 articles

were deemed suitable for inclusion in this review.

Risk of bias and quality assessment


Given the variation in the research designs of the targeted studies, the Hawker et al. (2002)³³

9

quality assessment tool was deemed an appropriate assessment tool . The articles were categorized into three quality levels: high, medium, and low. The distribution of articles across these categories was 41.7%, 50%, and 8.3%, respectively. Detailed quality scores were shown in Supplementary File 3.

Basic information for article included in this review

There were 60 studies assessing the implementation of lean in hospitals met the predefined inclusion criteria. We found that these studies were carried out in various countries (n=19), with the United States representing the largest proportion, accounting for 30.6% (n=19). 53.3% of the studies were conducted in Indonesia (n=5), Spain (n=5), Brazil (n=5), Italy (n=4), Ireland(n=4), China(n=4), Jordan (n=3) and UK(n=2). It has been shown in Figure 3. We also found that these articles were mainly published in management-related journals, with the top two journals being "Journal of Healthcare Management" and "International Journal of Environmental Research and Public Health," as shown in Figure 4. 12 studies evaluated the effectiveness of lean implementations across multiple hospitals in this review, while the remaining studies focused on lean improvement projects within a single hospital.

Figure 3. The top nine countries by article included in this review.

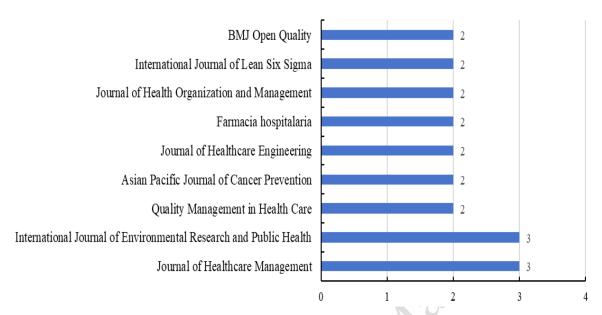


Figure 4. The top nine journals by article included in this review.

Theme classification

Lean, with its emphasis on maximizing benefits while minimizing investment, has gained widespread adoption among hospital managers since its introduction to the healthcare sector. This research primarily explored the impact of Lean implementation on hospitals, based on four key themes identified through narrative analysis. The 60 included articles were categorized into these four themes—Efficiency, Quality, Cost, and Satisfaction—based on the outcome variables assessed in each study.

Theme 1: Efficiency

Efficiency is the most frequently cited outcome in the context of Lean effectiveness, and it constituted the first theme covered in this review. In this study, efficiency refers to the systematic identification and elimination of non-value-added waste activities through the application of lean principles and tools, aimed at optimizing workflows to maximize the effective use of resources and time management, ultimately enhancing overall operational effectiveness. We systematically reviewed the included studies and summarized the variables associated with efficiency(n=49), integrating a total of 12 sub-dimensions commonly used by researchers to assess Lean efficiency or the areas often targeted for improvement through Lean. We found that the majority of hospitals implementing Lean management were public

hospitals, with only five being private hospitals. The size of sample hospitals included large, medium, and small, with the majority being large hospitals. Only six hospitals were medium-sized, and one was small. Regarding departments, Lean management was more commonly applied in single-department studies, with the top four departments being surgery, pharmacy, emergency, and operating rooms. The three most frequently mentioned variables are: waiting time, length of stay (LOS), and patient volumes.

Waiting time was identified as the primary issue across the studies, with 12 articles including it. Obviously, it has suggested that waiting time was the most commonly used indicator for efficiency improvement. There were variations in the extent of waiting time reductions across these studies, ranging from 11.3%⁵ to 88.03%³⁵. For instance, Catherine et al. reported a 60% improvement in waiting times³⁶, while Martins and Sérgio observed a 53.8% reduction³⁷ Specific details on waiting time reductions were also provided in several studies. Reis et al. reported a decrease in bed hygiene waiting time from 13.45 hours to 1.61 hours, representing an 88.03% reduction³⁵. Hammoudeh et al. found significant reductions in patient waiting times for prescriptions, with waiting times for prescriptions of fewer than three medications decreasing from 22.3 minutes to 8.1 minutes (63.7%), and for prescriptions of three or more medications, from 31.8 minutes to 16.1 minutes (49.4%)³⁸. Additionally, Ullah et al. reported a 26% improvement in the percentage of medical reviews conducted by a doctor within 15 minutes, up from 0%³⁹.

Length of Stay (LOS) is another critical indicator of efficiency improvement following the implementation of lean in hospitals. In this review, nine articles reported reductions in LOS, with four studies indicating a significant relationship between lean adoption and LOS reduction^{24, 40-41}. Additionally, five studies reported a decrease in LOS as a result of lean application. For example, Fiorillo et al. found that the average preoperative LOS represented a 22.4% reduction⁴². Similarly, Alexander et al. reported that psychiatric patients experienced a shorter length of stay in the emergency department, from 8 hours to 7 hours, a 12.5% decrease ⁷.

Upon pooling the targeted studies in this review, we found that six studies reported improvements in patient volumes following Lean implementation, with increases ranging from $15\%^{11}$ to $65\%^5$. Additionally, we identified five studies that investigated Lean improvements in patient discharged. Of these, three studies explicitly demonstrated that Lean was effective in reducing patient discharge time¹⁶ ⁴⁰ ⁴³ ⁴⁴. One study, in particular, revealed a significant association between Lean adoption and a decrease in the proportion of patients leaving the

emergency department (ED) without being seen, further supporting Lean's effectiveness⁴⁰. We also reviewed five studies that assessed the impact of Lean on lead time^{20 37 45-47}. All of these studies reported a significant reduction in lead time following the implementation of Lean initiatives. Notably, one study reported a substantial decrease in expected lead time, from 222 minutes to 42 minutes, representing an 81.1% reduction⁴⁷.

red-equip .ner related ca Furthermore, five studies focused on improvements in the time related-equipment⁴⁸⁻⁵², while four studies examined enhancements in process time⁵²⁻⁵⁵. Other related categories were summarized in Table 1.

Table1. The effect of lean applications in hospitals on efficiency.

Codes	Hospital type	Hospital size	Departments	Indicators	Values
Waiting	_	Large	Internal medicine,	Patient wait time ⁵⁶	-1.2% per month
time			family medicine,	Ġ	
			and pediatric		
	Public	Large	Fertility Clinic	Total patient waits time ¹⁸	-51.90%
	_	Large	Pharmacy	Waiting times significantly improved ⁵⁷	-30.50%
	Public	Large	Operating room	Waiting times for operations ⁵⁸	-35.00%
	Public	Large	Surgery	The time the bed waited for	-88.03%
			X	hygiene ³⁵	
	_	Medium	- (0)	Waiting time for patients ³⁷	-Approximately 53.8%
	Private	Small	Outpatient	The average total waiting time ⁵⁹	-37.92%
	Public	Large	Emergency	The percentage of waiting for	-11.30%
			department	counseling ⁵	
	Public	Large	Emergency	Waiting times for medical review by	-26%; -22%
		A	department	a doctor < 15min and analgesia	
				waiting times of 16-30 min	
	Public	Medium	_	The waiting time for vaccination ⁶⁰	-25.12%
	Private	Large	Pharmacy	Patient waiting time for prescriptions	-63.68%; -49.37%
				of fewer than 3 medications and of 3	
	\			medications or more ³⁸	

	Public	Large	Diagnostic Imaging,	Wait time ³⁶	-60%
			Surgery, Pathology		
			and the cancer		
			centre		
LOS	Public	_	Whole hospital	Lower severity-adjusted geometric	p<0.05
				length of stay showed significant	
				bivariate relationships with Lean	
				adoption ^{24 40}	
	Public	Large	Emergency	Length of stay(LOS) ⁶¹	-6.67%
			department		
	Public and	_	Whole hospital	ALOS are significantly correlated	b=-0.356, p<0.01
	private		K	with lean ⁴¹	
	Public	Large	Surgery	Average length of stay ⁴³	-14.41%
	Public	Large	Surgery	The average length of hospital stays	-78%
				in new pre-admission area ⁶²	
	Public	Large	Maxillofacial	The average preoperative LOS ⁴²	-22.40%
			Surgery		
	Public	All	Whole hospital	The adoption of Lean IT was	b=-0.098, p=0.018
			Y	significantly associated with a	
				reduction in severity-adjusted	
				geometric length of stay (LOS) ³⁵	

	Public	Large	Emergency	Length of stay of psychiatric patients	-12.5%; -3%
			department	in the emergency department;	
				length of stay exceeded 24 h ¹²	
Patient	Public	Large	Surgery	2014 and 2018 the number of	23.50%
volumes				patients on the SWL ⁶²	
	Public	Large	Surgery	Surgical capacity without the need	15%
				for new resources ¹¹	
	Public	Large	Emergency Room	Occupancy rate ⁶³	43.10%
	Public	Large	Surgery	The capacity of patient admissions ¹²	20.75%
	Public	Large	_	The number of patients treated ⁵	2799 in 2018 to 8979 in
				_0	2021
	Public	Large	Diagnostic Imaging,	Monthly patient volumes ³⁶	65%
			Surgery, Pathology		
			and the cancer		
			centre		
Patients	Public	All	Whole hospital	Lean adoption was significantly	b=-0.610, p < 0.068
discharg				associated in the direction predicted	
ed		AC	<i>, , , , , , , , , ,</i>	with the percentage of patients	
				leaving the ED without being seen ⁴⁰	
	_	Large	Surgery	The average time between computer	-30%
				entry of discharge orders and	
				patient's departure from the unit ⁴³	

	Public	Large	Ophthalmology	The mean time between registration	240 ± 14.14 to 60 ± 8.16
				and discharge of a patient ⁴⁴	min
			Acute care ward		16% on ward X; 10% on
				discharges on both wards ⁶⁴	ward Y
	Public	Large	Inpatient	The percentage of patients	-9%
				discharged without planned follow-	
				up appointments ¹⁶	
Lead	Private	Medium	Surgery	The ratio of productive time to lead	3.73 vs. 2.03
time				time during morning rounds was	
				higher after lean adaptation ⁴⁵	
	Private	Large	Pharmacy	Lead time in scenario-1 and in	-93.27% and -94.46%
				scenario-2 ⁴⁶	
	Public	_	Warehouse and	The lead time for the procurement of	-34.20%
			Logistics	medical devices ²⁰	
	Public	_	Ear, Nose, and	lead time ⁴⁷	-81.08%
			Throat; Audiology;		
			Neuroradiology		
Process	Public		Orthopedic	The overall scheduling time and	-13.29%; -37.37%
time			Surgery; General	Time reductions in the revised	
			Surgery;	process ⁵³	
			Otorhinolaryngology		
	Public	Large	Oncology	The average time for the closure of	-44.78%; -54.48%; -
				reported medication incidents and	86%;-68%

				non-medication incidents; maximum	
				closure days for the medication	
				group and the non-medication	
				group ⁵⁴	
	Public	Large	Pharmacy	The inpatient medication returns process ⁵²	-67%
	Public	Large	Pharmacy	The average process time ⁵⁵	-18.27%
Patient	Public	Medium	Tobacco Treatment	New patient referrals ⁶⁵	140.00%
referrals			center		
	Public	_	Ear, Nose, and	Referral to treatment time ⁴⁷	-69.78%
			Throat; Audiology;		
			Neuroradiology		
	Public	Large	Inpatient	Patient transfers decreased ⁶⁶	-30% and 23% in terms of
					total distance and transfer
					episodes, respectively
Operatin	Public	Large	Otolaryngology-	Operating Room Time ⁶⁷	-10.82%
g Room			Head and Neck		
Time		AC	Surgery		
	Private	Large	Surgery	Operating room turnover time ⁶⁸	-6.22%
Room	Private	Large	Infection Prevention	Median room turnover; Mean	-50%; (10 ± 1.41 to 8± 2
turnover			& Control	turnover time in between patients ⁶⁹	min)

/turnaro	Public	Large	Clinical Laboratory	Turnaround times in the delivery of	-13.10%
und				glucose test results at the adult	
times				emergency service ⁷⁰	
The time	Public	Large	Radiology	The percentage of CT scans overdue	-16.03%
related-				for scheduling ⁴⁸	
equipme	Public	Medium	Operating Room	The time taken to count each	-40%; -24%
nt				surgical tray and the average overall	
				instrument utilization rate ⁴⁹	
Ī	Public	Large	Ward Treatment	The mean time taken to gather	-64.28%; -62.3%
			Room	equipment for IVC and the need for	
				house officers(HO) to ask other ward	
			×	staff for help to locate equipment ⁵⁰	
	Public	Large	Pharmacy	Medication label printing time ⁵²	-70%
	Public	Large	Operating Room	The use of Chest X-rays and cardiac	-27%; -12%
				visits ⁵¹	
	Public	Large	Whole hospital	The inventory time of the	Decreased
Inventor				warehouse in each ward and	
У			<i>,</i>	materials in the treatment room	
			>	during shift hand-over ⁷¹	
	Public	Large	Pharmacy	Inventory management efficiency ⁵²	36%
Others	Public	Large	Emergency	30-day acute care utilization ⁶¹	0.30%
			department		

Private	Large	Infection Prevention	The duration of room cleaning and	-35.09%
		& Control	curtain changing ⁶⁹	
Private	Medium	Emergency	D2N time ⁷²	Reduced by 36 minutes
		Department		
Public	Large	Radiology	Within 60 minutes of patients'	35%
			arrival in a pre- and post-procedure	
			care area (PPCA) ⁷³	
Public	_	Outpatient	The work efficiency of senior doctors	25%; 50%
			and the patient flow of associate	
			senior doctors ⁷⁴	
Public	_	Whole hospital	lean practices are positively and	p<0.001
		×	significantly associated with	
			healthcare operational	
			performance ⁷⁵	
Public	Large	Operating Room	No Value-Added Time ⁵¹	-9%

Notes: "—" means that there was no related information in the targeted articles. "All" means that hospital size included large, medium, and small. "-" means "negative sign".

Theme 2: Quality

Lean implementation in hospitals has been widely recognized for its potential to enhance quality, as noted by numerous scholars. However, most existing research primarily assessed the impact of Lean on quality improvement through single in-hospital projects or cross-sectional studies, with limited attention given to a systematic perspective on which specific aspects of quality can be enhanced through Lean. In this review, we identified 12 studies that reported improvements in quality following Lean implementation, which encompassed 12 distinct variables. The hospital types involved in the quality theme primarily included public hospitals and private hospitals, with eight studies conducted in public hospitals and only two in private hospitals. Six studies were conducted in large hospitals, with only one in a medium-sized hospital. We found that the majority of studies were conducted at the hospital level. Single-department studies were rare and included departments such as pharmacy, emergency, and oncology.

Among these, the top three variables were the 30-day readmission rate, counseling sessions, and drug-related indicators. Specifically, three studies explicitly found a significant correlation between Lean implementation and reductions in 30-day readmission rates^{23 40 61 76}, while another study reported a decrease in the 30-day readmission rate, from 21% to 19.3%, following the implementation of Lean⁶¹. Three studies examined the impact of Lean on counseling sessions and reported that Lean resulted in an increase in the time spent between patients and doctors, with improvements ranging from 13%⁶⁵ to 23.3%⁵². Two studies focused on drug-related variables, including the number of available drug dosage forms and the number of high-risk drugs, which decreased by 56.72% and 40.73%, respectively⁷⁷.

Further studies reported improvements in other quality indicators, such as a reduction in the rate of pressure ulcers²³, low-mortality DRGs (Diagnosis-Related Groups)⁴⁰, enhanced patient safety⁴⁰, and improvements in the timeliness of care⁴⁰. We also identified a significant correlation between Lean implementation and appropriate use of medical imaging⁴⁰, EHR-based decision support⁷⁸, and the use of quality-focused information management⁷⁸. Moreover, several studies found that Lean implementation led to a notable reduction in adverse events⁷¹ and clinical defects⁷⁹, as well as improvements in service quality¹⁹, as summarized in Table 2.

Table 2. The effect of lean applications in hospitals on quality

Codes	Hospital type	Hospital size	Departments	Indicators	Values
Lower 30-	Public and	All	Whole hospital	Lower 30-day unplanned	b=-0.066, p=0.051
day	private			readmission rate ²³	
unplanned	Public and	All	Whole hospital	The degree of Lean implementation	b=-0.01, p<0.007
readmissi	private			was associated with lower 30-day	
on rate				unplanned readmission rate ⁷⁶	
	Public	All	Whole hospital	Lower 30-day readmission rates	b=-0.053, p=0.001
				showed significant bivariate	
				relationships with Lean adoption ⁴⁰	
	Public	Large	Emergency	30-day readmission rates ⁶¹	-1.70%
			department		
Counselin	Public	Medium	Tobacco	Mean counseling sessions ⁶⁵	13%
g sessions			Treatment		
	Public	_	Ear, Nose, and	Patient contact time ⁴⁷	18.06%
		7	Throat		
	Public	Large	Pharmacy	Patient counseling time ⁵²	23.30%
Drugs-	Public	Large	Inpatient	The number of pharmaceutical	-56.72%; -40.73%
related				dosages forms available and the	
				number of high-risk drugs ⁷⁷	
	Public	Large	Pharmacy	Medication expiry checks and	200%, 50%
				prescription verification ⁵²	

Lower	Public and	All	Whole hospital	Lower pressure ulcer rate ²³	b=0001, p=0.071
pressure	private				
ulcer rate					
Lower	Public	Large	Whole hospital	Lower death rates in low-mortality	p=0.002
death				diagnosis related groups (DRGs)	
rates in				showed significant bivariate	
low-				relationships with Lean adoption ⁴⁰	
mortality					
DRGs					
Patient	Public	Large	Whole hospital	Patient safety showed significant	p<0.001
safety				bivariate relationships with Lean	
			X	adoption ⁴⁰	
Timeliness	Public	Large	Whole hospital	Timeliness of care showed significant	p<0.001
of care			607	bivariate relationships with Lean	
				adoption, and the adoption of Lean	
		7		in public hospitals was significantly	
			· /	associated with timeliness of care ⁴⁰	
Appropriat	Public	Large	Whole hospital	The adoption of Lean in public	p<0.001;b=0.097,
e use of				hospitals was significantly associated	p=0.007
medical				with better-than-average national	
imaging	A	O		performance on the appropriate use	
		/		of medical imaging ⁴⁰	

EHR-	Public and	All	Whole hospital	The number of years doing Lean was	β=0.011, p=0.045
based	private			positively associated with use of	
decision				EHR-based decision support ⁷⁸	
support					
Use of	Public and	All	Whole hospital	The number of years doing Lean was	β=0.010, p=0.045
quality-	private			positively associated with use of	
focused				quality-focused information	
informatio				management ⁷⁸	
n					
managem				>	
ent				20	
Adverse	Public	Large	Whole hospital	Incidence of nursing adverse	-2%, p< 0.05
events				events ⁷¹	
Quality of	Private	Large	Oncology	Quality of services ¹⁹	3.84±0.56, β=0.512,
services					p<0.001
Clinical	Private	Large	Whole hospital	Clinical defects ⁷⁹	-2.80%
defects			~		

Notes: "—" means that there was no related information in the targeted articles. "All" means that hospital size included large, medium, and small. "-" means "negative sign".

Theme 3: Cost

Cost reduction is one of the most frequently cited benefits of Lean implementation, particularly for hospital managers seeking to control expenses and alleviate the operational burden on healthcare institutions. Cost refers to the financial resources spent by healthcare institutions in the context of Lean healthcare implementation in this study, categorized into direct costs (e.g., operational costs) and indirect costs (e.g., opportunity costs and savings from efficiency improvements). In this review, we identified 17 studies that focused on Lean-driven cost reductions, encompassing a total of nine distinct variables used to assess cost-saving outcome variables. In terms of hospital characteristics, Lean management was less frequently applied in private and small-sized hospitals. Specifically, only two studies were conducted in private hospitals, and two studies were conducted in small-sized hospitals. Additionally, we found that Lean management was applied in single departments, with the most common departments being operating rooms (2 studies), surgery (1 study), emergency (1 study), pharmacy (1 study), and fertility clinics (1 study).

The most commonly examined variable across these studies was operating costs, which were addressed in seven of the studies. Multiple studies have highlighted the effectiveness of Lean implementation in reducing hospital costs. Specifically, three studies reported reductions in operating costs, with savings ranging from $8.7\%^{79}$ to $80\%^{26}$. Additionally, four studies provided direct cost savings, such as one study showing a total cost savings of $€1,178.90^{49}$ and another conducted in the United States reporting average savings of US\$400,000 through Lean implementation⁸⁰.

Another frequently examined variable was Medicare spending per beneficiary/inpatient expense per admission, with all five studies in this category originating from the United States^{23 40 35 72 76}. One study found a positive correlation between Lean implementation and Medicare spending²³, while three studies reported a similar correlation between Lean implementation and inpatient expense per discharge^{35 40 76}. Notably, one of these studies also observed a negative correlation between the application of visual management tools and adjusted inpatient expense per discharge³⁵. Three studies focused on the EBITDA margin, all of which were conducted in the United States, and all indicated a proportional relationship between Lean implementation and improvements in the EBITDA margin^{24 35 40}. Medicine of cost was another area where Lean implementation showed cost-saving effects. One study reported a reduction of US\$22,097 in medical costs over a three-month period following Lean implementation⁸¹. Additionally, one study observed a decrease in the cost of sterilizing

pediatric minor set, dropping from €60 to €49.52, a reduction of 17.5%⁴⁹. Furthermore, two studies related to inventory optimization, along with one each involving participation in bundled payment schemes³⁵, net profit margin (NPMAR) ⁴¹, value-added rate¹⁸, and Rapid Improvement Events (RIE)⁷⁹, all demonstrated the cost-saving benefits of Lean implementation, as summarized in Table 3.

dra.
.ng bene

Author Accepted Mahillagura

Table 3. The effect of lean applications in hospitals on cost

Codes	Hospital type	Hospital size	Departments	Indicators	Values
Operation costs/	Public and	All	Whole hospital	Operating margin	b=0.005, p<0.10
Cost savings	private			(OPMAR) are	
				significantly correlated	
				with lean ⁴¹	
	Public	Large	Surgery	4-year project in	EUR 25.5 million
				operation costs	
			A)	saving ⁶²	
	Public and	Large	Operating Room	Operation costs	annual of US\$400,000
	private			savings ⁸⁰	
	Public	Medium	Operating Room	The total cost savings ⁴⁹	€ 1,178.90
	_	Medium	Whole hospital	Operational cost	80%
			Y	saving ²⁶	
	Public		Ear, Nose, and	Costs saving ⁴⁰	saving £5.9 million per
			Throat		year
	Private	Large	Whole hospital	Real cost savings and	28.8%; 8.7%
				Real dollar cost savings	
				in EDs than in other	
				settings ⁷⁹	
Medicare spending	Public and	All	Whole hospital	Adopting Lean was	b=-0.005, p=0.027
per	private			significantly associated	

beneficiary/inpatient				with lower Medicare	
expense per				spending per	
admission				beneficiary ²³	
	Public and	All	Whole hospital	The degree of Lean	b=-38.67; p < 0.001
	private			implementation	
				measured was	
				associated with lower	
				adjusted inpatient	
				expense per	
			A	admission ⁷⁶	
	Public	All	Whole hospital	The adoption of Lean in	b=-0.203, p=0.045
			X	public hospitals was	
		A		significantly associated	
				with lower adjusted	
				inpatient expense per	
				discharge ⁴⁰	
	Public	All	Whole hospital	Lean IT adoption was	b=-0.112, P=0.090;
				associated with	b=-0.176, P=0.034
		7		adjusted inpatient	
				expense per discharge	
				and visual	
				management tools	

	Private	Medium	Emergency	were also associated with lower adjusted inpatient expense per discharge ³⁵ The conservation of per	mean of 68.4 million
			Department	patient ⁷²	neurons
EBITDA	Public	All	Whole hospital	Lean adoption was significantly associated in the direction predicted with EBITDA ²⁴	b=0.042, p <0.020
	Public	All	Whole hospital	Lean adoption in public hospitals was marginally associated with a higher EBITDA margin ⁴⁰	b=0.114, p=0.055
	Public	All	Whole hospital	Lean IT adoption was found to be significantly related to EBITDA margin ³⁵	b=0.077, p=0.077

Medicine of cost	Public	Small	Pharmacy	The medicine of cost	US\$22.10
				saving in three	
				months ⁸¹	
	Public	Large	Surgery	A high-complexity	7.40%
				surgical block savings ²⁷	
	Public	Medium	Operating Room	Sterilization costs for a	17.50%
				pediatric minor set ⁴²	
Inventory	_	_	Supply rooms of	Inventory optimization	\$17,452
optimization			neuro intensive	savings ⁸²	
			care unit		
			(NICU))		
	Private	Small	Pharmacy	Inventory cost ⁸¹	49%
Participation in a	Public	All	Whole hospital	Lean IT adoption was	OR=2.060; p=0.018
bundled payment			y	found to be	
program				significantly related to	
				participation in a	
				bundled payment	
				program ³⁵	
Net profit margin	Public and	All	Whole hospital	Net profit margin	b=0.002, p<0.05
(NPMAR)	private			(NPMAR) was	
				significantly correlated	
				with lean ⁴¹	

Value-added ratio	Public	Large	Fertility Clinic	Value-added ratio	13%
				(VAR) ¹⁸	
RIE	Private	Large	Whole hospital	Mean annual benefit	\$147,897
				from that RIE ⁷⁹	

Notes: EBITDA=Earnings before interest, taxes, depreciation, and amortization margin "—" means that there was no related information in the targeted articles. "All" means that hospital size included large, medium, and small. "-" means "negative sign".

Theme 4: Satisfaction

According to Lean's core principles, both the concept of "patient first" and the principle of "respect for employees" are emphasized. This highlights Lean's dual focus on improving outcomes for patients while valuing the contributions of healthcare staff. As such, the satisfaction metrics examined in this context include both patient satisfaction and hospital employee satisfaction. Based on, satisfaction in this study refers to the overall evaluation of the healthcare service process, service quality, interactions with care providers, and the work environment, as perceived by patients, healthcare providers, and other relevant personnel. By assessing experiences across multiple dimensions, it reflects the effectiveness and efficiency of healthcare services, as well as the degree to which the psychological and emotional needs of both patients and staff are addressed. Inductive analysis revealed several key indicators of satisfaction: patient satisfaction, Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) patient experience scores, complaint rates, and nurse satisfaction. We found that the studies in this dimension were predominantly conducted in public hospitals, large hospitals, or at the hospital-wide level. The departments involved included emergency (one studies), pharmacy (one study), and warehouse and logistics (one study). Seven studies were conducted at the hospital-wide level.

A total of six studies investigated patient satisfaction, with five of them indicating an improvement in patient satisfaction linked to Lean implementation. One study, in particular, provided a detailed breakdown of satisfaction evaluation across various dimensions, including overproduction, waiting time, transportation, overprocessing, inventory, movement, and satisfaction defects⁸³. Regarding HCAHPS, which was primarily used in the United States to measure patient experience, three studies found a positive correlation between Lean implementation and improved patient experience scores^{35 40 76}. These findings suggest that Lean practices can enhance patient satisfaction and overall healthcare experience. Additionally, two studies examined the effect of Lean implementation by assessing changes in patient complaints, finding a reduction in complaint rates following Lean interventions^{20 60}. Only one study addressed nurse satisfaction, reporting a notable increase from 60.78% to 86.06% on the level of "very satisfied." ⁷¹, as summarized in Table 4.

Table 4. The effect of lean applications in hospitals on satisfaction

Codes	Hospital type	Hospital size	Departments	Indicators	Values
Patient	_	Small	Internal medicine,	Satisfaction included the	44.8 %, p< 0.05; 71.6%, p
satisfacti			family medicine,	adequacy of time spent with	<0.01;55.4%, p < 0.01
on			and pediatric	care providers during office	
				visits, their care provider's	
				ability to listen to their	
				concerns and perceived staff	
			/	helpfulness at the visit ⁵⁶	
-	_	Large	Pharmacy	Overall satisfaction	5.79±3.61, p<0.05
				improved ⁵⁷	
-	Public	Large	Emergency	Overall satisfaction ³⁹	16%, p=0.253
			department (ED)		
-	Public	Medium	Emergency	Satisfaction of patients ⁶⁰	8.08%
			department (ED)		
-	Public	- >	Ear, Nose, and	Patient satisfaction	p<0.05
			Throat	increased ⁴⁰	
-	Private	Small	Inpatient	Inpatient satisfaction,	p=0.019=p=0.012;p=0.01
				including overproduction,	1;p=0.017;p=0.010;p=0.0
				waiting time , transportation,	15;p=0.010
				excess processing, inventory,	

				motion, and satisfaction	
				defects ⁸³	
HCAHPS	Public and	All	Whole hospital	Hospital adoption of Lean was	b=3.35, p<0.0001; b=
patient	private			associated with higher	0.12, p<0.012
experien				HCAHPS patient experience	
ce				scores and the degree of	
scores				Lean implementation	
				measured by the number of	
			,	units throughout the hospital	
			2	using Lean was associated	
				with higher HCAHPS patient	
			XO	experience scores ⁷⁶	
	Public	All	Whole hospital	Lean adoption in public	b=0.114, p=0.055
				hospitals was marginally	
				associated with HCAHPS	
				patient experience ratings ⁴⁰	
	Public	All	Whole hospital	Lean IT adoption was	b= 0.083, p=0.051
				associated with a higher	
				HCAHPS score ³⁵	
	Public		Warehouse and	The number of complaints ²⁰	-44.50%
			Logistics		

	Public	Medium	Emergency	Compliance rate ⁶⁰	-4.85%, p<0.001
Complia			department (ED)		
nce rate					
Nurses'	Public	Large	Assessment	Nurses' satisfaction ⁷¹	25.28%, p<0.0011
satisfacti				45	
on					

Notes: HCAHPS= Hospital Consumer Assessment of Healthcare Providers and Systems;"—" means that there was no related information in the targeted articles. "All" means that hospital size included large, medium, and small. "-" means "negative sign".

Discussion

The articles reviewed provide a comprehensive summary of the effects of Lean application in hospitals across four primary themes: efficiency, quality, cost, and satisfaction. Within these areas, the key contributions of Lean methodologies are effectively summarized, emphasizing its positive outcomes. The findings across the included articles consistently demonstrate the beneficial impact of Lean applications in healthcare settings. These positive results underscore the importance of promoting and further integrating Lean strategies in hospitals. Lean management, particularly focused on process optimization and waste reduction, offer valuable insights that can be applied to improve healthcare delivery, making them crucial for practitioners and policymakers aiming to enhance hospital operations and patient care quality. Lean has been rapidly adopted since its introduction to the healthcare sector, particularly in developed countries, reflects its increasing recognition as a solution to improve operational efficiency. The United States, in particular, has been at the forefront of this movement, as evidenced by Antony et al², which reported that 47% of Lean-related research in hospitals originated from the U.S. and the UK, with a further 23% from countries like Switzerland, Italy, and Brazil. Our findings were consistent with this pattern, showing that Lean is gaining substantial traction across various healthcare systems. Moreover, Lean implementation is steadily growing in developing countries, aligning with the observations made by Rathi et al84. The expansion of Lean practices into developing regions indicates that these methodologies are increasingly regarded as a valuable tool for addressing healthcare challenges, even in resource-constrained settings. Lean implementation is a long-term process, and in many countries, especially developing ones, it is still in its early stages in healthcare. As a result, most studies demonstrate Lean effectiveness through case studies 5 37 56 57 . Research evaluating entire hospitals is mainly led by the U.S.^{24 40 76}, where Lean is more established, and specialized databases like The National Survey of Lean (NSL) help assess Lean performance, facilitating healthcare research.

We found that most lean initiatives were implemented in large public hospitals, with the emergency department, operating rooms, and pharmacies being the most commonly involved departments. This may be attributed to the fact that large public hospitals handle a higher volume of patients and complex medical processes, often with limited resources, which necessitates a greater focus on operational efficiency. Lean management can enhance operational efficiency and reduce costs by optimizing processes, eliminating waste, and ensuring the optimal allocation of resources.

Lean management has long emphasized improving operational efficiency, and our research corroborated the widespread focus on this principle within the reviewed targeted articles. Specifically, Theme one, which pertains to efficiency improvement, was the most frequently addressed topic across the studies, with a total of 49 studies, accounting for 81.2% of the total targeted articles reviewed. This prevalence suggests that Lean implementation continues to be primarily examined through the lens of enhancing efficiency, reflecting the broader trend in healthcare management to prioritize resource optimization. Among the key efficiency factors examined, waiting times, length of stay (LOS), and patient volume emerged as central themes in the application of Lean. These factors reflected areas that hospitals are currently prioritizing, likely because they represent the most accessible and impactful opportunities for improvement. Supporting our findings, a comprehensive review of Lean tools for healthcare process optimization by Barros et al⁸⁵. similarly highlighted reductions in lead time, LOS, and costs as notable outcomes of Lean application. One significant point of divergence across the studies was the varying degree of reduction in waiting times, decreasing from 11.3%⁵ to 92.8%¹². These reported reductions in wait time also vary, mainly including bed hygiene waiting times¹², consultation waiting times⁵, patient waiting times for prescriptions³⁸. These variations underscore the influence of context-specific factors on these indicators, such as the interventions used, hospital environments, and measurement methodologies. The heterogeneity in results is partly due to differing baseline comparisons (some studies used initial measurements, others tracked improvement rates), which introduces variability in both the assessment approach and the final outcomes. Our analysis demonstrated that Lean management was consistently effective in reducing hospital length of stay (LOS) 12 24 35 40-43 ⁶¹, reinforcing the significant correlation between Lean adoption and reduced LOS. This finding illustrates how Lean strategies not only streamline operational processes but also enhance patient flow, contributing to better resource allocation and improved care delivery. Another notable finding in this review was the positive impact of Lean on patient volume. The implementation of Lean practices resulted in increased patient volumes, with improvements ranging from 15%¹¹ to 68.9%⁵, suggesting that Lean methodologies can optimize hospital throughput even within the constraints of existing resources. This suggests that Lean methodologies can enhance hospital efficiency by optimizing patient volumes, even within the constraints of existing resources. In addition, Lean interventions have also proven effective in other areas, such as facilitating patient discharged 16 40 43 44; reduction in lead times 20 37 45-47, and shortening process times⁵²⁻⁵⁵. These outcomes highlight Lean's potential to improve

hospital operations and efficiency, addressing both high-impact areas like patient flow and less obvious aspects such as discharge processes, demonstrating its versatility in healthcare. The second theme explored in this study was the impact of Lean implementation on quality improvement, a key concern for hospital practitioners. The 12 studies included in this review, though focused on different variables based on specific research objectives, all indicated a significant relationship between Lean practices and improvements in hospital quality. The most frequently examined variables were the 30-day readmission rates^{23 40 61 76}, counseling sessions ^{47 52 65}, and Drugs-related ^{23 52 77}.

Three studies specifically identified a significant correlation between Lean implementation and reduced 30-day readmission rates, with one study reporting a decrease from 21% to 19.3% following Lean adoption⁶¹. This suggests that Lean practices may enhance discharge planning and post-discharge care, potentially addressing common causes of readmission. Moreover, three studies highlighted that Lean resulted in increased patient consultation time and improvements in drug-related outcomes. These included better availability of pharmaceutical dosages and a reduction in the use of high-risk medications⁷⁷, as well as enhanced prescription verification procedures⁵². These findings underscore Lean's positive impact on patient safety, particularly in terms of medication management. Further, two studies from the United States documented a reduction in low-mortality Diagnosis-Related Groups (DRGs)^{47 71}, indicating that Lean may optimize hospital resource utilization, particularly for less critical cases. Another study observed a decrease in the incidence of pressure ulcers²³, further emphasizing Lean's potential in improving patient outcomes in areas that require systematic monitoring and preventive measures. Although less frequently examined, variables such as patient safety⁴⁰, timeliness of care⁴⁰, and rational use of medical imaging⁴⁰ were also addressed, reinforcing the broad applicability of Lean in enhancing multiple facets of hospital quality. By streamlining processes and fostering a culture of continuous improvement, Lean appears to address inefficiencies across various stages of patient care, thereby improving overall hospital performance. These findings suggest that Lean managements have significant potential to improve hospital quality across diverse domains, offering valuable insights for hospital managers seeking innovative solutions to enhance operational efficiency and quality care. Furthermore, the positive outcomes associated with Lean support its wider adoption in healthcare systems, with the potential to foster substantial improvements in both patient outcomes and operational efficiency.

The third theme of this paper addressed the impact of Lean implementation on hospital costs.

Studies focused on cost reduction, making this the second most frequently discussed topic after operational efficiency. This highlights the growing importance of cost reduction in contemporary hospital management, especially in response to global pressures to reduce healthcare spending while improving service efficiency. As a result, achieving cost reduction has become a central strategic goal for hospitals around the world. As Cegłowska et al noted in a review, lean management can positively influence treatment outcomes, which, in turn, can lead to cost reductions for healthcare systems⁸⁶. Our findings confirmed that Lean application can indeed help hospitals achieve cost savings. A review of Lean applications in Chinese hospitals reflected similar outcomes, though it also revealed that no hospital reported success in reducing patient care costs4. This suggests that while Lean can streamline operations and reduce overhead, its impact on direct care-related costs may be more nuanced and contingent on the specific organizational context. The most commonly reported areas of cost reduction include operating costs²⁶ ⁴¹ ⁶² ⁸⁰, inpatient expense per admission ⁴⁰ ³⁵ ⁷⁶, and EBITDA²⁴ ³⁵ ⁴⁰. For instance, one study documented a 17.5% reduction in disinfection costs for pediatric minor sets⁴⁹, demonstrating Lean's potential in optimizing non-clinical aspects of hospital operations. Given the diversity of the studies and the variation in the specific cost variables examined, this review offers a systematic perspective on the key cost-related variables commonly explored in Lean cost-reduction research. These variables served as critical indicators of Lean's effectiveness in reducing healthcare costs, providing valuable insights for future research and practical application in hospital settings. The success of Lean in cost reduction depends not only on targeted processes but also on organizational culture and commitment to continuous improvement. Hospitals that effectively implement Lean typically foster a collaborative culture, with staff at all levels engaged in problem-solving and process redesign.

The final theme discussed in this paper was satisfaction, a critical yet underexplored area in Lean research. Although Lean principles emphasize the significance of improving both patient and staff experience to enhance overall satisfaction, these comprehensive variables are often overlooked in studies, as project stakeholders tended to focus more on the tangible outcomes of Lean implementation. Our analysis revealed that most studies on satisfaction focused on patient satisfaction^{39 47 56 57 60 83}, with six studies included in this theme. Talero-Sarmiento also highlighted a significant body of literature focused on adopting Lean strategies to improve patient satisfaction⁸⁷. Furthermore, two reviews reported that lean management was positively associated with their job satisfaction^{88 89}. In contrast, only one study examined

nurse satisfaction^{71.} An interesting novel finding from this review was that two articles mentioned a decrease in complaint rates after Lean implementation, which indirectly reflects an increase in satisfaction^{20 60}. Additionally, HCAHPS scores, a key metric for assessing patient satisfaction in U.S. hospitals, were frequently discussed across studies^{76 40 35}. In contrast, other countries often rely on more traditional post-implementation satisfaction scales. These insights highlight the need for a more balanced approach to Lean research, incorporating both patient and staff satisfaction.

This approach is essential for achieving sustained improvements in healthcare delivery, as the long-term success of Lean initiatives depends not only on operational efficiencies but also on the well-being and engagement of those involved in patient care. Integrating staff satisfaction metrics, particularly for nurses, offers a more holistic view of Lean's impact, enhancing our understanding of its potential to improve healthcare quality and sustainability.

This review examines the positive effects of Lean implementation in hospitals from four distinct dimensions, providing a fresh perspective that aligns with the current priorities of healthcare institutions. We intended to offer valuable insights for hospital administrators and policymakers when considering the introduction or application of Lean management. However, this study had its limitations. First, the scope of the search was restricted to recent years, thereby limiting the selection of relevant literature. Second, although we considered lean-related terminology, there may still be cases where some terms are missing, and relevant literature could be overlooked.

Third, while all the included studies report positive outcomes from Lean implementation, the majority focus on single departments or specific projects, which restricts the ability to draw definitive causal conclusions. Fourth, considerable variation in the terminology, tools, and methods used across the targeted articles makes it challenging to identify a standardized context for Lean application, and consequently, the review could only provide a broad summary of the key areas in which improvements were observed.

Future research should examine long-term effects of lean application in hospitals across diverse hospitals, particularly in developing countries. This will help ensure the broader applicability and sustainability of Lean practices in a variety of healthcare environments, facilitating continued improvements in patient care, operational efficiency, and financial viability.

Conclusions

This review synthesizes the effects of Lean management in healthcare, focusing on four key themes: efficiency, quality, cost, and satisfaction. We found that most hospitals adopting Lean are large public hospitals, particularly in high-impact departments such as emergency rooms, operating rooms, and pharmacies. These departments, with high patient volumes and complex processes, benefit most from Lean to streamline operations and reduce costs. Key efficiency improvements include reduced waiting times, shorter lengths of stay (LOS), and better patient flow, all contribute to enhanced resource utilization. Lean also drives significant quality improvements, such as lower 30-day readmission rates, improved medication management, and heightened patient safety. These outcomes highlight the benefits of Lean to improve patient care through better discharge planning, consultations, and safer medication practices. Financially, Lean management results in cost reductions by enhancing treatment outcomes and operational efficiency, which is crucial in the current global healthcare landscape focused on cost containment. By optimizing processes and reducing waste, Lean fosters both improved hospital performance and long-term financial sustainability. Regarding satisfaction, most studies focus on patient satisfaction, with fewer addressing employee satisfaction. Patient satisfaction was also evaluated through compliance rates. . Future research should explore Lean's long-term effects in diverse hospital environments, particularly in developing countries, to ensure broader applicability and sustainability.

Practice Implications

The application of Lean in hospitals offers significant value across various domains, benefiting hospitals, healthcare managers, and policymakers. Studies consistently highlight the benefits from Lean management, particularly in improving operational efficiency in large hospitals. Lean management is helpful to create a more efficient and resource-effective environment by reduce waiting times, length of stay (LOS), and optimize patient flow. Lean also enhances both clinical and non-clinical outcomes, such as lowering operating costs, inpatient expenses, and improving resource allocation (e.g., cost reductions in pediatric department disinfection). These efficiencies support profitability while ensuring effective resource use, crucial for hospitals with limited budgets. For healthcare managers, Lean management provides a framework to improve both patient care quality and operational efficiency. Lean consistently lowers 30-day readmission rates, enhances patient safety, and addresses medication-related issues, especially in improving post-discharge care. These improvements aid in reducing

costly readmissions and enhance care continuity. Additionally, Lean fosters greater staff engagement and job satisfaction, encouraging a culture of continuous improvement and operational excellence. For policymakers, Lean practices offer a solution to controlling healthcare costs while maintaining or improving service quality. Policymakers can leverage Lean to enhance patient flow, minimize unnecessary procedures, and optimize care delivery, thus meeting the growing demand for cost-effective, patient-centered healthcare systems.

Ethical issues

This study does not involve human participants, human data, or any animal studies. Therefore, ethical approval was not required.

Acknowledgements

The authors acknowledge the time and effort that participants expended on this survey.

References

- 1. Kunnen YS, Roemeling OP, Smailhodzic E. What are barriers and facilitators in sustaining lean management in healthcare? A qualitative literature review. *BMC Health Serv Res* 2023;23(1):958. doi: 10.1186/s12913-023-09978-4
- 2. Antony J, Sunder MV, Sreedharan R, et al. A systematic review of Lean in healthcare: a global prospective. *International Journal of Quality & Reliability Management* 2019;36(8):1370-91. doi: 10.1108/jgrm-12-2018-0346
- 3. Carr S, Pearson, Young M, et al. UK community health visiting: challenges faced during lean implementation. *Journal of Healthcare Leadership* 2012 doi: 10.2147/jhl.S16322
- 4. Gao T, Gurd B. Organizational issues for the lean success in China: exploring a change strategy for lean success. *BMC Health Serv Res* 2019;19(1):66. doi: 10.1186/s12913-019-3907-6
- 5. Bossone E, Majolo M, D'Ambrosio S, et al. Lean Management Approach for Reengineering the Hospital Cardiology Consultation Process: A Report from AORN "A. Cardarelli" of Naples. *Int J Environ Res Public Health* 2022;19(8) doi: 10.3390/ijerph19084475
- 6. Lindsay CF, Aitken J. Using Programme Theory to evaluate Lean interventions in healthcare. *Production Planning & Control* 2022;35(8):824-41. doi: 10.1080/09537287.2022.2139778
- 7. Alexander L, Moore S, Salter N, et al. Lean management in a liaison psychiatry department: implementation, benefits and pitfalls. *BJPsych Bull* 2020;44(1):18-25. doi:

- 10.1192/bjb.2019.64
- 8. Graban M. LeanBlog Podcast #80 Joan Wellman, a Pioneer of the Application Lean in Healthcare[EB/OL]. (2009-12-04)[2025-3-29].https://www.leanblog.org/2009/12/leanblog-podcast-80-joan-wellman-lean-in-healthcare/.
- 8. Zoe J. Radnor MH, Waring J. Lean in healthcare: The unfilled promise? *Social Science* & *Medicine* 2012;74(3):364-71.
- 10. Kenney C. A Leadership Journey in Health Care: Virginia Mason's Story (1st ed.). *Productivity Press* 2015. https://doi.org/10.1201/b18584
- 11. Sales-coll M, De-Castro R, De-Echagüen AO, et al. Lean healthcare: Improving surgical process indicators through prioritization projects. *Journal of Industrial Engineering and Management*. 2023;16(1) doi: 10.3926/jiem.4628
- 12. Reis LP, Fernandes JM, Silva SE, et al. Managing inpatient bed setup: an action-research approach using lean technical practices and lean social practices. *Journal of health organization and management* 2023;37(2):213-35. doi: https://doi.org/10.1108/JHOM-09-2021-0365
- 13. Teich ST, Faddoul FF. Lean management-the journey from toyota to healthcare. *Rambam Maimonides Med J.* 2013 Apr 30;4(2):e0007. doi: 10.5041/RMMJ.10107
- 14. Kellner HA, Edelman ER, van-Eldik N, et al. The evaluation of a lean healthcare concept to improve the implementation of Digital Health innovations in secondary health care: a qualitative study within a Dutch hospital setting. *BMC Health Serv Res.* 2024 3;24(1):1536. doi: 10.1186/s12913-024-11956-3
- 15. Graban M. Toyota's Respect for People Principle: The Heart of Lean Thinking and Practice. [EB/OL]. (2013-2-26)[2025-3-29]. https://www.leanblog.org/2013/02/toyota-respect-for-people-or-humanity-and-lean/.
- 16. AlHarthy SH, Ayaad O, Al-Mashari AAA, et al. Improving Care Continuity in Oncology Settings: A Lean Management Approach to Minimize Discharges Without Follow-Up Appointments. *Asian Pac J Cancer Prev.* 2024;25(4):1293-300. doi: 10.31557/APJCP.2024.25.4.1293
- 17. Pellini F, Di-Filippo G, Mirandola S, et al. Effects of Lean Thinking and Emerging Technologies on Breast Cancer Patients' Therapeutic Process During COVID-19 Pandemic: A Case-Control Matched Study. *Frontiers in Surgery*. 2021;8 doi: https://doi.org/10.3389/fsurg.2021.582980
- 18. Muharam R, Firman F. Lean Management Improves the Process Efficiency of Controlled

- Ovarian Stimulation Monitoring in IVF Treatment. *J Healthc Eng.* 2022;2022:6229181. doi: 10.1155/2022/6229181
- 19. Ayaad O, Al-Dewiri R, Kasht L, et al. Adopting Lean Management in Quality of Services, Cost Containment, and Time Management. *Asian Pac J Cancer Prev* 2022;23(8):2835-42. doi: 10.31557/APJCP.2022.23.8.2835
- 20. Kurnia H, Suhendra S, Manurung H, et al. Implementation of Lean Service Approaches to Improve Customer Satisfaction and Sustainability of Health Equipment Procurement Process at Hospitals. *Quality Innovation Prosperity* 2023;27(3):1-17. doi: 10.12776/gip.v27i3.1875
- 21. Fuentes L, Gardim L, Silva TOD, et al. Applying Lean Healthcare in the hospitalization and patient discharge process: an integrative review. *Rev Bras Enferm* 2023;76(5):e20220751. doi: 10.1590/0034-7167-2022-0751
- 22. Timmons S, Coffey F, Vezyridis P. Implementing lean methods in the Emergency Department: the role of professions and professional status. *Journal of Health. Organization and Management*, 2014, 28 (2): 214-228
- 23. Rundall TG, Shortell SM, Blodgett JC, et al. Adoption of Lean management and hospital performance: Results from a national survey. *Health Care Manage Rev.* 2021;46(1):E10-E19. doi: 10.1097/HMR.00000000000000287
- 24. Po J, Rundall TG, Shortell SM, et al. Lean Management and U.S. Public Hospital Performance: Results From a National Survey. *J Healthc Manag.* 2019;64(6):363-79. doi: 10.1097/JHM-D-18-00163
- 25. Gareth H. Rees RG. Can lean contribute to work intensification in healthcare? *Journal of Health Organization and Management*. 2017;31(3):369-84. doi: https://doi.org/10.1108/JHOM-11-2016-0219
- 26. Abdallah AA. Healthcare Engineering: A Lean Management Approach. *J Healthc Eng* 2020;2020:8875902. doi: 10.1155/2020/8875902
- 27. Poksinska BB, Fialkowska-Filipek M, Engström J. Does Lean healthcare improve patient satisfaction? A mixed-method investigation into primary care. *BMJ Quality & Safety.* 2016;26(2):85-86. doi: https://doi.org/10.1136/bmjqs-2015-004290
- 28. Jiang W, Sousa PSA, Moreira MRA, et al. Lean direction in literature: a bibliometric approach. *Production & Manufacturing Research* 2021;9(1):241-63. doi: 10.1080/21693277.2021.1978008
- 29. Akmal A, Greatbanks R, Foote J. Lean thinking in healthcare findings from a systematic literature network and bibliometric analysis. *Health Policy* 2020;124(6):615-27. doi:

- https://doi.org/10.1016/j.healthpol.2020.04.008
- 30. Randles R, Finnegan A. Guidelines for writing a systematic review. *Nurse Education Today* 2023;125:105803. doi: https://doi.org/10.1016/j.nedt.2023.105803.
- 31. Dos-Santos VC, Siqueira RM, Godinho-Filho M. Enhancing healthcare operations: a systematic literature reviewonapproaches for hospital facility layout planning. *J Health Organ Manag.* 2024:22-45. doi: 10.1108/JHOM-12-2023-0358
- 32. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Med.* 2009 21;6(7):e1000097. doi: 10.1371/journal.pmed.1000097
- 33. Hawker S, Payne S, Kerr C, et al. Appraising the evidence: reviewing disparate data systematically. *Qual Health Res* 2002;12(9):1284–99. doi: https://doi.org/10.1177/1049732302238251
- 34. Braithwaite J, Herkes J, Ludlow K, et al. Association between organisational and workplace cultures, and patient outcomes: systematic review. *BMJ Open* 2017;7(11):e017708. doi: https://doi.org/10.1136/bmjopen-201 7-017708.
- 35. Lee J, Hung DY, Reponen E, et al. Associations Between Lean IT Management and Financial Performance in US Hospitals. *Qual Manag Health Care* 2024;33(2):67-76. doi: 10.1097/QMH.0000000000000440 [published Online First: 2023/10/11]
- 36. C Cotton C, Mahut C, Blyth J, et al. Using Lean to Improve Wait Time Performance in Diagnostic Assessment for Lung Cancer. *Healthc Q.* 2020;22(4):59-63. doi: 10.12927/hcq.2020.26082
- 37. Martins-Drei S, Arruda-Ignácio PS. Lean healthcare applied systematically in a medium-sized medical clinic hospitalization. *J Health Organ Manag.* 2022;36(5):666-89. doi: https://doi.org/10.1108/JHOM-05-2021-0194
- 38. Hammoudeh S, Amireh A, Jaddoua S, et al. The Impact of Lean Management Implementation on Waiting Time and Satisfaction of Patients and Staff at an Outpatient Pharmacy of a Comprehensive Cancer Center in Jordan. *Hosp Pharm* 2021;56(6):737-44. doi: 10.1177/0018578720954147
- 39. Ullah MF, Fleming C, Fox C, et al. Patient experience in a surgical assessment unit following a closed-loop audit using a Kaizen Lean system. *Ir J Med Sci* 2020;189(2):641-47. doi: 10.1007/s11845-019-02105-5
- 40. Roey T, Hung DY, Rundall TG, et al. Lean Performance Indicators and Facilitators of Outcomes in U.S. Public Hospitals. *J Healthc Manag* 2023;68(5):325-41. doi: 10.1097/JHM-

D-22-00107

- 41. Zhang H. The effect of lean on performance: a longitudinal study of US Hospitals. *Journal of Accounting & Organizational Change* 2021;17(5):728-52.doi: https://doi.org/10.1108/JAOC-05-2020-0062
- 42. Fiorillo A, Sorrentino A, Scala A, et al. Improving performance of the hospitalization process by applying the principles of Lean Thinking. *The TQM Journal* 2021;33(7):253-71. doi: 10.1108/tgm-09-2020-0207
- 43. Mangum CD, Andam-Mejia RL, Hale LR, et al. Use of Lean Healthcare to Improve Hospital Throughput and Reduce LOS. *Pediatr Qual Saf* 2021;6(5):e473. doi: 10.1097/pq9.00000000000000473
- 44. Verolino M, Grassi P, Sosto G, et al. Lean approach to the management of patients undergoing intravitreal injections during COVID-19 pandemic. *Ther Adv Ophthalmol* 2021;13:25158414211018893. doi: 10.1177/25158414211018893
- 45. Feinman M, Hsu ATW, Taylor S, et al. Cutting the fat: Utilizing LEAN methodology to improve rounding efficiency of surgical residents. *Am J Surg* 2022;223(6):1100-04. doi: 10.1016/j.amjsurg.2021.12.005
- 46. Yuliati V, Andriani H. Implementation of Lean Kaizen to Reduce Waiting Time for the Indonesian Health Social Security Agency Prescription Services in Hospital Pharmacy Installation Implementation of Lean Kaizen to Reduce Waiting Time for the Indonesian Health Social Security Agency Prescription Services in Hospital Pharmacy Installation. *Open Access Macedonian Journal of Medical Sciences* 2021;9(E):1495-503. doi: 10.3889/oamjms.2021.7610
- 48. Epistola R, Ho B, Leong S, et al. Applying Lean Kaizen to Improve Timely Computed Tomography Scan Appointments for Oncology Patients in a Safety Net Hospital. *JCO Oncol Pract* 2023;19(4):e465-e69. doi: 10.1200/OP.22.00393
- 49. Herlihy E, Antao B, Fawaz A, et al. Adapting lean methodology towards surgical tray rationalisation in inguinoscrotal day case surgery in the republic of *Ireland. J Pediatr Urol* 2023;19(4):433 e1-33 e8. doi: 10.1016/j.jpurol.2023.03.021
- 50. Boyle S, Tyrrell O, Quigley A, et al. Improving ward level efficiency using a modified treatment room layout according to Lean methodologies. *Ir J Med Sci* 2022;191(1):127-32.

- doi: 10.1007/s11845-021-02590-7
- 51. Goretti G, Pisarra M, Capogreco MR, et al. A framework for lean implementation in preoperative assessment: Evidence from a high complexity hospital in Italy. *Health Services Management Research* 2023;37(4):236-44. doi: 10.1177/09514848231194853
- 52. Sallam M, Allam D, Kassem R. Improving Efficiency in Hospital Pharmacy Services: An Integrated Strategy Using the OCTAGON-P Framework and Lean 5S Management Practices. *Cureus* 2024;16(3):e56965. doi: 10.7759/cureus.56965
- 53. Lin CC, Shen JH, Chen SF, et al. Developing a Cost-Effective Surgical Scheduling System for Improved Data Utilization in Hospitals: Application of Lean Thinking and Toyota's Methods to Surgery-Related Big Data. *JMIR Form Res* 2024;8:e52185. doi: 10.2196/52185
- 54. Alzahrani Z. Lean thinking: using 6S and visual management for efficient adverse event closure. *BMJ Open Qual* 2021;10(1) doi: 10.1136/bmjoq-2020-001197
- 55. Trakulsunti Y, Trakoonsanti L. The use of Lean tools to reduce inpatient waiting time in a Thai public hospital: an action research study. *Leadersh Health Serv*. 2021;ahead-of-print(ahead-of-print) doi: 10.1108/LHS-10-2020-0080
- 56. Hung DY, Mujal G, Jin A, et al. Patient experiences after implementing lean primary care redesigns. *Health Serv Res* 2021;56(3):363-70. doi: 10.1111/1475-6773.13605
- 57. Martín-Conde MT, Cacho-Del-Cacho ED, Calvo-Cidoncha E, et al. Improvement of outpatient pharmacy through patient participation and Lean methodology. *Farmacia Hospi* 2021;45(6):317 22. doi: 10.7399/fh.11681
- 58. Sales-Coll M, de-Castro R, Hueto-Madrid JA. Improving operating room efficiency using lean management tools. *Production Planning & Control* 2021;34(13):1261-74. doi: 10.1080/09537287.2021.1998932
- 59. Rocha ÍJA, Vasconcelos CRd. Lean healthcare implications in an occupational medicine clinic. *International Journal of Lean Six Sigma*, 2021;12(5):973-91. doi: https://doi.org/10.1108/IJLSS-05-2020-0056
- 60. Zhang MM, Yu XC, Lu FL, et al. Lean Management Promotes Compliance and Satisfaction of Rabies Vaccines. *Patient Prefer Adherence*. 2021;15:1207-12. doi: 10.2147/PPA.S305086
- 61. McWilliams A, Schoen M, Krull C, et al. Combining Lean and Applied Research methods to improve rigor and efficiency in acute care outcomes research: A case study. *Contemp Clin Trials Commun.* 2019;14:100322. doi: 10.1016/j.conctc.2019.100322
- 62. Sales-Coll M, De-Castro R, de-Echaguen OA, et al. Economic Impact of Lean Healthcare Implementation on the Surgical Process. *Healthcare* (Basel) 2024;12(5) doi:

- 10.3390/healthcare12050512
- 63. Freitas PS, de-Mendonca GS, Resende ES. Implementation of the Lean Healthcare System in the Emergency Room of the Clinical Hospital of the Federal University of Uberlandia: A Case Study. *Int J Environ Res Public Health* 2023;20(24) doi: 10.3390/ijerph20247184
- 64. Rollinson TJ, Furnival J, Goldberg S, et al. Learning from Lean: a quality improvement project using a Lean-based improvement approach to improve discharge for patients with frailty in an acute care hospital. *BMJ Open Qual* 2021;10(4) doi: 10.1136/bmjoq-2021-001393
- 65. Meyer C, Mitra S, Ruebush E, et al. A Lean Quality Improvement Initiative to Enhance Tobacco Use Treatment in a Cancer Hospital. *Int J Environ Res Public Health* 2020;17(6) doi: 10.3390/ijerph17062165
- 66. Papp C, Harsanyi S, Gesztelyi R, et al. Assessment of patient flow and optimized use of lean thinking transformation from the perspective of graph theory and spectral graph theory: A case study. *Technol Health Care* 2021;29(2):199-211. doi: 10.3233/THC-191782
- 67. Ibrahim A, Ndeti K, Bur A, et al. Association of a Lean Surgical Plan of the Day With Reduced Operating Room Time for Head and Neck Free Flap Reconstruction. *JAMA Otolaryngol Head Neck Surg* 2019;145(10):926-30. doi: 10.1001/jamaoto.2019.2250
- 68. Cerfolio RJ, Ferrari-Light D, Ren-Fielding C, et al. Improving Operating Room Turnover Time in a New York City Academic Hospital via Lean. *Ann Thorac Surg* 2019;107(4):1011-16. doi: 10.1016/j.athoracsur.2018.11.071
- 69. Ankrum AL, Neogi S, Morckel MA, et al. Reduced isolation room turnover time using Lean methodology. *Infect Control Hosp Epidemiol* 2019;40(10):1151-56. doi: 10.1017/ice.2019.199
- 70. Letelier P, Guzman N, Medina G, et al. Workflow optimization in a clinical laboratory using Lean management principles in the pre-analytical phase. *J Med Biochem* 2021;40(1):26-32. doi: 10.5937/jomb0-26055
- 71. Wang X, Liu Y. Application of Lean Visual and "6S" Management Concept in *Clinical Nursing. J Multidiscip Healthc* 2023;16:3923-31. doi: 10.2147/JMDH.S438753
- 72. Balcom C, Reyes E. Using LEAN methodology to expedite the treatment of acute ischemic stroke in the emergency room. *Healthc Manage Forum* 2019;32(5):232-36. doi: 10.1177/0840470419844532
- 73. Rachh P, Davis MA, Heilbrun ME. Quality Improvement Report: Improving Pre- and Postprocedure Care Area Workflows at a Busy Urban Academic Hospital Using Lean

- Management Principles. *Radiographics*. 2023;43(2):e220089. doi: 10.1148/rg.220089
- 74. Hua L, Dongmei M, Xinyu Y, et al. Research on outpatient capacity planning combining lean thinking and integer linear programming. *BMC Med Inform Decis Mak* 2023;23(1):32. doi: 10.1186/s12911-023-02106-6
- 75. Ilangakoon TS, Weerabahu SK, Samaranayake P, et al. Adoption of Industry 4.0 and lean concepts in hospitals for healthcare operational performance improvement. *International Journal of Productivity and Performance Management* 2022;71(6): 2188-213. doi: 10.1108/ijppm-12-2020-0654
- 76. Shortell SM, Blodgett JC, Rundall TG, et al. Lean Management and Hospital Performance: Adoption vs. Implementation. *Jt Comm J Qual Patient Saf* 2021;47(5):296-305. doi: 10.1016/j.jcjq.2021.01.010
- 77. Gayoso-Rey M, Martinez-Lopez de Castro N, Paradela-Carreiro A, et al. LEAN methodology: design and assessment of a standardized medication storage model. *Farm Hosp* 2020;45(1):3-9. doi: 10.7399/fh.11365
- 78. Tierney AA, Shortell SM, Rundall TG, et al. Examining the Relationship Between the Lean Management System and Quality Improvement Care Management Processes. *Quality management in health care* 2022;31(1):1-6. doi: 10.1097/qmh.0000000000000318
- 79. Menachemi N, Tinsley T, Johnston A, et al. Implementation of Lean in a Health System: Lessons Learned From a Meta-Analysis of Rapid Improvement Events, 2013-2017. *J Healthc Manag* 2020;65(6):407-17. doi: 10.1097/JHM-D-19-00097
- 80. Souza T, Roehe-Vaccaro GL, Lima RM. Operating room effectiveness: a lean health-care performance indicator. *International Journal of Lean Six Sigma*, 2020;11(5): 973-88. doi: https://doi.org/10.1108/IJLSS-12-2017-0141
- 81. Iswanto AH, Rosady SD. Monitoring and evaluation of Lean implementation in pediatric pharmacy: A study of mother and child hospital in Jakarta. *Sys Rev Pharm*;11(6):939-45. doi: 10.31838/srp.2020.6.132
- 82. Yaglowski J. Implementing the Lean 5S process improvement to boost efficiency and cost savings in hospital supply rooms. *Nursing* 2024;54(5):56-61. doi: 10.1097/01.NURSE.0001007648.07632.3b
- 83. Amansyah A, Nasution AN, Ginting CN, et al. The Effect of Lean Approach on Hospital Service Quality and Inpatient Satisfaction. *Unnes Journal of Public Health* 2023;12(1):12-20. doi: 10.15294/ujph.v12i1.57692
- 84. Rathi R, Vakharia A, Shadab M. Lean six sigma in the healthcare sector: A systematic

literature review. Mater Today Proc 2022;50:773-81. doi: 10.1016/j.matpr.2021.05.534

85. de Barros LB, Bassi LC, Caldas LP, et al. Lean Healthcare Tools for Processes Evaluation:

An Integrative Review. *Int J Environ Res Public Health* 2021;18(14) doi: 10.3390/ijerph18147389

- 86. Ceglowska U, Zawada A, Zielinska M, et al. Using a lean management approach in acute ischemic stroke management: a systematic review. *Postep Psychiatr Neurol* 2024;33(2):67-79. doi: 10.5114/ppn.2024.141056
- 87. Talero-Sarmiento LH, Escobar-Rodríguez LY, Gomez-Avila FL, et al. A literature review on Lean healthcare: implementation strategies, challenges, and future research directions. *Cogent Engineering* 2024;11(1) doi: 10.1080/23311916.2024.2411857
- 88. Mahmoud Z, Angele-Halgand N, Churruca K, et al. The impact of lean management on frontline healthcare professionals: a scoping review of the literature. *BMC Health Serv Res* 2021;21(1):383. doi: 10.1186/s12913-021-06344-0
- 89. Sartini M, Patrone C, Spagnolo AM, et al. The management of healthcare-related infections through lean methodology: systematic review and meta-analysis of observational studies. *J Prev Med Hyg* 2022;63(3):E464-E75. doi: 10.15167/2421-4248/jpmh2022.63.3.2661