Development of the PICCOTEAM Reference Case for Economic Evaluation of Precision Medicine

Document Type : Original Article

Authors

1 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore

2 Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Bangkok, Thailand

3 Centre for Healthcare Equipment and Technology Adoption, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK

4 Health Economics and Health Technology Assessment, School of Health and Wellbeing, University of Glasgow, Glasgow, UK

5 Centre for Applied Health Economics, School of Medicine and Dentistry, Griffith University, Nathan, QLD, Australia

6 Menzies Health Institute Queensland, Griffith University, Nathan, QLD, Australia

7 Science Department IQ Health, Radboud University Medical Center, Nijmegen, The Netherlands

8 Department of Management Science, University of Strathclyde Business School, Glasgow, UK

9 Duke-NUS Medical School, Singapore, Singapore

10 Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore

11 Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore

12 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore

13 Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand

14 Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

15 A full list of collaborators of the Working Group is provided in Supplementary file 1

Abstract

Background 
Current economic evaluations (EEs) of precision medicine (PM) often adhere to generic reference cases (RCs) which overlook the unique healthcare paradigms of PM. This study aimed to develop an RC to standardize the conduct and reporting of EEs of PM.
 
Methods 
A working group comprising 5 core health economists, 22 PM experts, and research staff from Singapore, Thailand, the Netherlands, UK, and Australia who were actively engaged in EE and clinical PM implementation. The RC development comprised four stages: (1) Expert consultation shaping the RC’s scope and structure across nine domains: Population, Intervention, Comparator, Cost, Outcome, Time, Equity and ethics, Adaptability, and Modelling (ie, “PICCOTEAM” framework); (2) A comprehensive literature review on current PM EE approaches and challenges; (3) Obtaining expert consensus and drafting recommendations; (4) A workshop for RC refinement based on stakeholder feedback on relevance and feasibility. Following an experts’ workshop, consensus was reached to tailor PM recommendations for screening, diagnosis, and pharmacogenomics, market-access, and early EEs.
 
Results 
The PICCOTEAM RC offers 46 recommendations for conventional EEs to guide PM reimbursement, emphasizing expert engagement, iterative study processes, disease-specific outcomes, decision uncertainty analyses, and equity considerations. Additionally, 30 recommendations are provided for early-stage evaluation to enhance PM’s positioning and value proposition, mitigating uncertainty, equity, and ethical issues.
 
Conclusion 
The PICCOTEAM RC offers a standardized process to conduct and report diverse PM EEs. This will serve as guidance for health departments, researchers, clinicians, editors, and reviewers. Pilot testing and continuous updates are recommended for ongoing relevance and applicability of this RC. 

Keywords


  1. Schleidgen S, Klingler C, Bertram T, Rogowski WH, Marckmann G. What is personalized medicine: sharpening a vague term based on a systematic literature review. BMC Med Ethics. 2013;14:55. doi:1186/1472-6939-14-55
  2. Vellekoop H, Huygens S, Versteegh M, et al. Guidance for the harmonisation and improvement of economic evaluations of personalised medicine. Pharmacoeconomics. 2021;39(7):771-788. doi:1007/s40273-021-01010-z
  3. National Cancer Institute (NCI). Definition of Precision Medicine - NCI Dictionary of Cancer Terms. NCI; 2011.
  4. American Cancer Society (ACS). Precision or Personalized Medicine | Precision Medicine for Cancer. https://cancer.org/cancer/managing-cancer/treatment-types/precision-medicine. Accessed April 15, 2025.
  5. American Cancer Society (ACS). Targeted Cancer Therapy | Targeted Drug Therapy for Cancer. https://cancer.org/cancer/managing-cancer/treatment-types/targeted-therapy. Accessed April 15, 2025.
  6. Sarki M, Ming C, Aissaoui S, et al. Intention to inform relatives, rates of cascade testing, and preference for patient-mediated communication in families concerned with hereditary breast and ovarian cancer and Lynch syndrome: the Swiss CASCADE cohort. Cancers (Basel). 2022;14(7):1636. doi:3390/cancers14071636
  7. World Health Organization (WHO). Health technology assessment of medical devices, 2nd ed. WHO; 2025. https://iris.who.int/handle/10665/381526.
  8. Ijzerman MJ, Koffijberg H, Fenwick E, Krahn M. Emerging use of early health technology assessment in medical product development: a scoping review of the literature. Pharmacoeconomics. 2017;35(7):727-740. doi:1007/s40273-017-0509-1
  9. National Institute for Health and Care Excellence (NICE). Guide to the Methods of Technology Appraisal 2013: The Reference Case. NICE; 2013.
  10. Teerawattananon Y, Chaikledkaew U. Thai health technology assessment guideline development. J Med Assoc Thai. 2008;91 Suppl 2:S11-15.
  11. Wilkinson T, Sculpher MJ, Claxton K, et al. The international decision support initiative reference case for economic evaluation: an aid to thought. Value Health. 2016;19(8):921-928. doi:1016/j.jval.2016.04.015
  12. Chen W, Wong NC, Wang Y, et al. Mapping the value for money of precision medicine: a systematic literature review and meta-analysis. Front Public Health. 2023;11:1151504. doi:3389/fpubh.2023.1151504
  13. Chen W, Wang Y, Zemlyanska Y, et al. Evaluating the value for money of precision medicine from early cycle to market access: a comprehensive review of approaches and challenges. Value Health. 2023;26(9):1425-1434. doi:1016/j.jval.2023.05.001
  14. Halbisen AL, Lu CY. Trends in availability of genetic tests in the United States, 2012-2022. J Pers Med. 2023;13(4):638. doi:3390/jpm13040638
  15. Botwright S, Sittimart M, Chavarina KK, et al. Good practices for health technology assessment guideline development: a report of the Health Technology Assessment International, HTAsiaLink, and ISPOR special task force. Int J Technol Assess Health Care. 2025;40(1):e74. doi:1017/s0266462324004719
  16. Oortwijn W, Husereau D, Abelson J, et al. Designing and implementing deliberative processes for health technology assessment: a good practices report of a joint HTAi/ISPOR task force. Int J Technol Assess Health Care. 2022;38(1):e37. doi:1017/s0266462322000198
  17. Husereau D, Drummond M, Augustovski F, et al. Consolidated Health Economic Evaluation Reporting Standards 2022 (CHEERS 2022) statement: updated reporting guidance for health economic evaluations. MDM Policy Pract. 2022;7(1):23814683211061097. doi:1177/23814683211061097
  18. Merlin T, Farah C, Schubert C, Mitchell A, Hiller JE, Ryan P. Assessing personalized medicines in Australia: a national framework for reviewing codependent technologies. Med Decis Making. 2013;33(3):333-342. doi:1177/0272989x12452341
  19. Agency for Care Effectiveness (ACE). ACE Clinical Guidance (ACG) Process and Methods. ACE; 2025.
  20. National Institute for Health and Care Excellence (NICE). NICE Guidance. https://www.nice.org.uk/guidance. Accessed April 15, 2025.
  21. Leelahavarong P, Doungthipsirikul S, Kumluang S, et al. Health technology assessment in Thailand: institutionalization and contribution to healthcare decision making: review of literature. Int J Technol Assess Health Care. 2019;35(6):467-473. doi:1017/s0266462319000321
  22. Wahlster P, Brereton L, Burns J, et al. An integrated perspective on the assessment of technologies: INTEGRATE-HTA. Int J Technol Assess Health Care. 2017;33(5):544-551. doi:1017/s0266462317000484
  23. Moher D, Schulz KF, Simera I, Altman DG. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7(2):e1000217. doi:1371/journal.pmed.1000217
  24. Halder I, Yang BZ, Kranzler HR, Stein MB, Shriver MD, Gelernter J. Measurement of admixture proportions and description of admixture structure in different US populations. Hum Mutat. 2009;30(9):1299-1309. doi:1002/humu.21045
  25. Williamson PR, Altman DG, Bagley H, et al. The COMET handbook: version 1.0. Trials. 2017;18(Suppl 3):280. doi:1186/s13063-017-1978-4
  26. COMET Initiative. https://www.comet-initiative.org/
  27. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-536. doi:7326/0003-4819-155-8-201110180-00009
  28. Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis. Diagn Progn Res. 2019;3:18. doi:1186/s41512-019-0064-7
  29. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi:1136/bmj.i4919
  30. Bojke L, Soares MO, Claxton K, et al. Reference case methods for expert elicitation in health care decision making. Med Decis Making. 2022;42(2):182-193. doi:1177/0272989x211028236
  31. Soares M, Colson A, Bojke L, et al. Recommendations on the use of structured expert elicitation protocols for healthcare decision making: a good practices report of an ISPOR task force. Value Health. 2024;27(11):1469-1478. doi:1016/j.jval.2024.07.027
  32. Goulder LH, Williams RC. The choice of discount rate for climate change policy evaluation. Clim Change Econ. 2012;3(4):1250024. doi:1142/s2010007812500248
  33. Asaria M, Griffin S, Cookson R. Distributional cost-effectiveness analysis: a tutorial. Med Decis Making. 2016;36(1):8-19. doi:1177/0272989x15583266
  34. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling good research practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-1. Med Decis Making. 2012;32(5):667-677. doi:1177/0272989x12454577
  35. Felizzi F, Paracha N, Pöhlmann J, Ray J. Mixture cure models in oncology: a tutorial and practical guidance. Pharmacoecon Open. 2021;5(2):143-155. doi:1007/s41669-021-00260-z
  36. Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press; 2003.
  37. Adarkwah CC, van Gils PF, Hiligsmann M, Evers SM. Risk of bias in model-based economic evaluations: the ECOBIAS checklist. Expert Rev Pharmacoecon Outcomes Res. 2016;16(4):513-523. doi:1586/14737167.2015.1103185
  38. Ferrante di Ruffano L, Hyde CJ, McCaffery KJ, Bossuyt PM, Deeks JJ. Assessing the value of diagnostic tests: a framework for designing and evaluating trials. BMJ. 2012;344:e686. doi:1136/bmj.e686
  39. Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg. 2011;128(1):305-310. doi:1097/PRS.0b013e318219c171
  40. Rogowski W, Payne K, Schnell-Inderst P, et al. Concepts of 'personalization' in personalized medicine: implications for economic evaluation. Pharmacoeconomics. 2015;33(1):49-59. doi:1007/s40273-014-0211-5
  41. Berger ML, Sox H, Willke RJ, et al. Good practices for real‐world data studies of treatment and/or comparative effectiveness: recommendations from the joint ISPOR‐ISPE special task force on real‐world evidence in health care decision making. Value Health. 2017;20(8):1003-1008. doi:1016/j.jval.2017.08.3019
  42. Cargnin S, Jommi C, Canonico PL, Genazzani AA, Terrazzino S. Diagnostic accuracy of HLA-B*57:01 screening for the prediction of abacavir hypersensitivity and clinical utility of the test: a meta-analytic review. Pharmacogenomics. 2014;15(7):963-976. doi:2217/pgs.14.52
  43. Helm BM, Ware SM. Clinical decision analysis of genetic evaluation and testing in 1013 intensive care unit infants with congenital heart defects supports universal genetic testing. Genes (Basel). 2024;15(4):505. doi:3390/genes15040505
  44. Adamson AS, Abraham I. Decision curve analysis and the net benefit of novel tests. JAMA Dermatol. 2022;158(6):684. doi:1001/jamadermatol.2022.0976
  45. Bojke L, Claxton K, Sculpher M, Palmer S. Characterizing structural uncertainty in decision analytic models: a review and application of methods. Value Health. 2009;12(5):739-749. doi:1111/j.1524-4733.2008.00502.x
  46. Retèl VP, Joore MA, Linn SC, Rutgers EJ, van Harten WH. Scenario drafting to anticipate future developments in technology assessment. BMC Res Notes. 2012;5:442. doi:1186/1756-0500-5-442
  47. Markiewicz K, van Til JA, Steuten LM, Ijzerman MJ. Commercial viability of medical devices using headroom and return on investment calculation. Technol Forecast Soc Change. 2016;112:338-346. doi:1016/j.techfore.2016.07.041
  48. Chen E. Stochastic cost-effectiveness analysis on population benefits. Cost Eff Resour Alloc. 2023;21(1):78. doi:1186/s12962-023-00488-y
  49. Heath A, Manolopoulou I, Baio G. A review of methods for analysis of the expected value of information. Med Decis Making. 2017;37(7):747-758. doi:1177/0272989x17697692
  50. Tuffaha HW, Strong M, Gordon LG, Scuffham PA. Efficient value of information calculation using a nonparametric regression approach: an applied perspective. Value Health. 2016;19(4):505-509. doi:1016/j.jval.2016.01.011
  51. Gao Q, Zeng Q, Wang Z, et al. Circulating cell-free DNA for cancer early detection. Innovation (Camb). 2022;3(4):100259. doi:1016/j.xinn.2022.100259
  52. Kramer A, Rubio-Alarcón C, van den Broek D, et al. A scenario-drafting study to explore potential future implementation pathways of circulating tumor DNA testing in oncology. Mol Oncol. 2024;18(11):2730-2742. doi:1002/1878-0261.13562
  53. Wang Y, Rattanavipapong W, Teerawattananon Y. Using health technology assessment to set priority, inform target product profiles, and design clinical study for health innovation. Technol Forecast Soc Change. 2021;172:121000. doi:1016/j.techfore.2021.121000
  54. Grutters JP, Kluytmans A, van der Wilt GJ, Tummers M. Methods for early assessment of the societal value of health technologies: a scoping review and proposal for classification. Value Health. 2022;25(7):1227-1234. doi:1016/j.jval.2021.12.003
  55. Scholte M, Marchau V, Kwakkel JH, Klijn CJ, Rovers MM, Grutters JP. Dealing with uncertainty in early health technology assessment: an exploration of methods for decision making under deep uncertainty. Value Health. 2023;26(5):694-703. doi:1016/j.jval.2022.08.012
  56. Baltussen R, Jansen MP, Bijlmakers L, et al. Value assessment frameworks for HTA agencies: the organization of evidence-informed deliberative processes. Value Health. 2017;20(2):256-260. doi:1016/j.jval.2016.11.019
  57. Sharma D, Prinja S, Aggarwal AK, Rajsekar K, Bahuguna P. Development of the Indian Reference Case for undertaking economic evaluation for health technology assessment. Lancet Reg Health Southeast Asia. 2023;16:100241. doi:1016/j.lansea.2023.100241
  58. Bouttell J, Heggie R, Oien K, et al. Economic evaluation of genomic/genetic tests: a review and future directions. Int J Technol Assess Health Care. 2022;38(1):e67. doi:1017/s0266462322000484
  • Received Date: 13 August 2024
  • Revised Date: 16 April 2025
  • Accepted Date: 02 August 2025
  • First Published Date: 04 August 2025
  • Published Date: 01 December 2025